g 4
" i><0v>q https:/ /introml.mit.edu/

6.390 Intro to Machine Learning

Lecture 10: Markov Decision Processes

Shen Shen
April 19, 2024

https://introml.mit.edu/

Outline

e Recap: Supervised Learning
e Markov Decision Processes

= Mario example

= Formal definition
= Policy Evaluation

o State-Value Functions: V-values

o Finite horizon (recursion) and infinite horizon (equation)
= Optimal Policy and Finding Optimal Policy

o General tool: State-action Value Functions: (Q-values

o Value iteration

Toddler demo, Russ Tedrake thesis, 2004

(Uses vanilla policy gradient (actor-critic))

https://shenshen.mit.edu/demos/gifs/russ_toddler.gif

000000
SECTIR O1

Pong Enduro Beamrider

[Human-level control through deep reinforcement learning. Mnih et al. Nature 2015]

[s o | N 6 ¢ g0b dan | (LEE SEDOL _

DD"]
~

[Mastering the game of Go with deep neural networks and tree search. Silver et al. Nature 2016]

[Solving Rubik's cube with a robot hand. OpenAl. 2019]

Photo Credits: DeepMind and SPC/EPFL

0.09s
=
Lo

View from inside the tokamak Plasma state reconstruction

[Magnetic control of tokamak plasmas through deep reinforcement learning. Degrave et al. Nature 2022]

Planner 1. Observes 2. Decides > 3. Optimizes : Al planner @ Episode n Episode n +1
Market price Set tax rates Social welfare | : 50% i 2004 L
Tax rates) — :
X @ : Effective tax rates 20% : 39% T
Agent inventories : [———
Agents 1. Observe > 2.Decide > 3. Optimize : Tax paid < Posttax incomes <« «—
Neighborhood i A ‘ Move/gather Posttax utilty | :
Inventory Buy/sell : ;
= - N " :
Skill level | Build Agent Do 50 2 o 502 : 02l &P W21
Market price 100 20 :
Tax rate :
Adapting to |each other] :
© Agent & e CoJ1e et Lo 11el
2 Coin A Wood e 200 : 180 :

© Stone ™ House

Equality (x) == Productivity (y) =

&
® @ __ t y -,
@}O Trading OO : | ; H0 |
0

'\0 : Social welfare
Observing "~ X :
X X

Building :
: O ag% ' ! 78% 1

[The Al Economist: Taxation policy design via two-level deep multiagent RL. Zheng et al. Science 2022]

nature medicine

Explore content v About the journal v Publish with us v Subscribe

nature > nature medicine > articles > article

Article | Published: 13 January 2022

Optimizing risk-based breast cancer screening policies
with reinforcement learning

Adam Yala &, peter G. Mikhael, Constance Lehman, Gigin Lin, Fredrik Strand, Yung-Liang Wan,

Kevin Hughes, Siddharth Satuluru, Thomas Kim, Imon Banerjee, Judy Gichoya, Hari Trivedi & Regina

Barzilay

Nature Medicine 28, 136-143 (2022) | Cite this article

8291 Accesses | 24 Citations | 67 Altmetric | Metrics

Abstract

Screening programs must balance the benefit of early detection with the cost of
overscreening. Here, we introduce a novel reinforcement learning-based framework for
personalized screening, Tempo, and demonstrate its efficacy in the context of breast cancer.
We trained our risk-based screening policies on a large screening mammography dataset
from Massachusetts General Hospital (MGH; USA) and validated this dataset in held-out
patients from MGH and external datasets from Emory University (Emory; USA), Karolinska
Institute (Karolinska; Sweden) and Chang Gung Memorial Hospital (CGMH; Taiwan). Across
all test sets, we find that the Tempo policy combined with an image-based artificial
intelligence (Al) risk model is significantly more efficient than current regimens used in
clinical practice in terms of simulated early detection per screen frequency. Moreover, we
show that the same Tempo policy can be easily adapted to a wide range of possible screening
preferences, allowing clinicians to select their desired trade-off between early detection and
screening costs without training new policies. Finally, we demonstrate that Tempo policies
based on Al-based risk models outperform Tempo policies based on less accurate clinical risk
models. Altogether, our results show that pairing Al-based risk models with agile Al-designed
screening policies has the potential to improve screening programs by advancing early
detection while reducing overscreening.

Retrospective
patient
trajectory

Recommended
trajectories

Tempo-mirai

Annual

Biennial

!
i
2

6 months early

o

& »

12-month delay

\ 4

Discovering faster matrix multiplication
algorithms with reinforcementlearning

Size Best method Best rank AlphaTensor rank
(n, m, p) known known Modular Standard
https://doi.org/10.1038/541586-022-05172-4 Alhussein Fawzi'**, Matej Balog'?, Aja Huang"f. Thomas l-l.ubert"’, 2,2,2 Strassen, 1 969)2 7 7 7
2 ' ()
Received: 2 October 2021 Bernardino Romera-Paredes, Mohammadamin Barekatain’, Alexande 15
Francisco J. R. Ruiz', Julian Schrittwieser', Grzegorz Swirszez', David i (3, 3, 3) (Laderman, 1976) 23 23 23
Accepted: 2 August 2022 & Pushmeet Kohli' (Str assen, 1 959)2
Published online: 5 October 2022 4.4,4) 2,2,2)®(2,2,2) 49 4f 49
a b c
My = (8 +8,XBy +5,) ,23) 222)+@21) "noo1n 1
& &) a a\ (b b m,=(a,+a,)b, (2,2,4) (2,2,2+(2,2,2) 14 14 14
P a, a, b, b, m, =8 (Bamby) U = (2,2,5) (2,2,2)+(2,2,3) 18 18 18
e A (2,3,3) (Hopcroft and Kerr, 1971)'¢ 15 15 15
. m,=a,(by=b,) (2,3,4) (Hopcroft and Kerr, 1971)' 20 20 20
b, ‘ o my = (8 +83)b, (2,3,5) (Hopcroftand Kerr, 1971)'® 26 25 25
b, e 2,4,4) (Hopcroft and Kerr, 1971)'® 26 26 26
\ . 2,4,4)
4 ¢4 Mg = (83-a,)(b, +b,) Va 2 4 65) (Hopcroft and Kerr, 1971)16 33 33 33
b (2,4,5)
‘ m, = (@,-a,)(by+b,) (2,6,5) (Hopcroft and Kerr, 1971)'¢ 40 40 40
‘ ‘ . €y =My +m,-mg+m, (3,3,4) (Smimov, 2013)18 29 29 29
@3, 3,5) (Smimov, 2013)18 36 36 36
Ca = My + My W = 3, 4, 4) (Smimov, 2013)18 38 38 38
., o, ., ., Cy=my+m, 3,4,5) (Smirnov, 2013)® 48 47 47
(3, 5,5) (Sedoglavic and Smimov, 2021)'°58 58 58
Ca=My =M, +My+m,
(4,4,5) (4,4,2) + (4,4,3) 64 63 63

X 4,5,5) 2,5,5 ® (2,1,1) 80 76 76

https:/ /say-can.github.io/img/demo_sequence_compressed.mp4

https://say-can.github.io/img/demo_sequence_compressed.mp4

https://s3.amazonaws.com/media-p.slid.es/videos/1350152/Jg2VLvbO/bi-manual_nutella_on_toast.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/PSVOiCD8/book_page_w__recovery.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/MmRrOmfd/bi-manual_berry_scooping.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/M1Uv4St7/bi-manual_potato_peeling.mp4

(The demo won't embed in PDF. But the direct link below works.)

https://learning-to-paint.github.io/

Reinforcement Learning with Human Feedback

[Aligning language models to follow instructions. Ouyang et al. 2022]

Markov Decision Processes

e Foundational tools and concept to understand RL.

e Research area initiated in the 1950s (Bellman), known under various names (in various
communities):

= Stochastic optimal control (Control theory)

= Stochastic shortest path (Operations research)

= Sequential decision making under uncertainty (Economics)

= Dynamic programming, control of dynamical systems (under uncertainty)
= Reinforcement learning (Artificial Intelligence, Machine Learning)

o A rich variety of (accessible & elegant) theory/math, algorithms, and
applications/illustrations

« As aresult, quite a large variations of notations.

o We will use the most RL-flavored notation

I.! J...I - : .. :
F Running example: Mario in a grid-world

* 9 possible states

« 4 possible actions: {Up 1, Down |, Left «—, Right —}

e almost all transitions are deterministic:

= Normally, actions take Mario to the “intended” state.

o E.g., in state (7), action “1” gets to state (4)
= If an action would've taken us out of this world, stay put
o E.g., in state (9), action “—" gets back to state (9)
= except, in state (6), action “1” leads to two possibilities:
o 20% chance ends in (2)
o 80% chance ends in (3)

~ |
g example cont'd

« (state, action) pair can get Mario rewards:

i) 3 NG o In state (3), any action gets reward +1 @
v | 4s0% | !
oo 80% ! I
[5 6 | 299 e In state (6), any action gets reward -10 L
-10 i ol
7 8 9 Any other (state, action) pairs get reward 0

e imstitte, ki o 4

actions: (Up 1, Down |, : « goal is to find a gameplay strategy for Mario, to
Left <, Right —}
= get maximum sum of rewards

= get these rewards as soon as possible

Definition and Goal

o S : state space, contains all possible states s. Sidenote:

« A : action space, contains all possible actions a. « In 6.390, R(s,a) is

« T(s,a,s’): the probability of transition from state s to s’ when deterministic and
action a is taken. bounded.

e R(s,a) : a function that takes in the (state, action) and returns e In 6.390, (s) is
a reward. deterministic.

e v € [0, 1]: discount factor, a scalar. e In this week, S and

A are discrete set,

i.e. have finite

o m(s) : policy, takes in a state and returns an action. elements (in fact,

typically quite
Ultimate goal of an MDP: Find the "best" policy . small)

Ty = rh = T = ry = rqy = s — Te — rT =

30,00 31,a1 32,a2 83,(13 34,a4 55,a5 36,a6 37,07
Reward r
Reward R(s, a)
Action a .
Transition T (s, a, s')
State s
‘ time

a trajectory (aka an experience or rollout) 7 = (sg,aq, 7o, S1,01,71,---)

how "good" is a trajectory?

R(sp,a0) + ~R(s1,a1) + ’)/2R(82,a2) + 73R(33,a3) + 74R(34,a4) + 75R(35,a5) + 76R(36,a6) + 77R(37,a7)

To = r = r2 = r3 = r4 = s = Te = r7r =

SO,GO 81,a1 32,a2 83,(13 34,a4 35,a5 367a6 57,a7

Reward r

Reward R(s, a)
Action a Transition T (s, a, s')
State s

time

a trajectory (aka an experience or rollout) 7 = (sg, a9, 79, S1,01,71,---)

« Now, suppose h the horizon (how many time steps), and s, the initial state are given.
o Also, recall the rewards R(s, a) and policy 7(s) are deterministic.
o There would still be randomness in a trajectory, due to stochastic transition.

o That is, we cannot just evaluate

R(so,a0) + “R(s1,a1) + Y°R(s2,a2) + 7’R(ss,a3) + Y'R(ss,as) + ~’R(ss;a5) + 7°R(s¢,as) + ~'R(s7,ar)

C— el —0)
Policy evaluation

For a given policy 7 (s), the finite-horizon horizon-h (state) value functions are:

Vi(s) = E [z,’;} V'R (51,7 (5)) | 80 = s,w] Vs, h

|

<

JI:R(3070’0) + YR(s1,a1) + Y'R(s2,a2) + 7Y'R(ss,a3) + 7'R(ss,as) + 7°R(ss,a5) + 7°R(ss,a6) + 7'R(sr,a7) ...]

o expected sum of discounted rewards, for starting in state s, following policy 7(s), for
horizon h.

o expectation w.r.t. stochastic transition.

e horizon-0 values are all 0.

o value is a long-term thing, reward is a one-time thing.

g
P example: evaluating the "always 1" policy

Recall: L VI(s) = [Zt o YR (86,7 (s¢)) | s0 = 3,7?] ,Vs, h
,) ; w(s) =“1", Vs :
s R(3, 1) =1 : Suppose v = 0.9
20% T+ 1
4 5 | 6 | R(6,T)=-10 '
1 2
R(s, 1) for all other seven states E E[R(so,ao) + OREua) + (9 Risza0)--]
7 8 9 : ~— —
: h terms inside
1
VO(s) Ve (s)
e Horizon h = 1: simply
 Horizon h =0; . . . receiving the rewards 0 0 !
nothing happens
0 0 | -10
0 0 0
0 0 0
0 0 0

e Horizon h =2

Recall: :
s Vi(s) = E |05 'R (50, (s1) | 80 = s, 7]
1 9 3 ! R(s0,a0) 7R(s1,01)
Y. |4 80% :
20% T '
4 5 6 :]E[R(So,ao) + .9R(31,a1)]
7 8 9 E e gl —
: 2 terms inside
(S) Y T 9 E
R(3,1) =1 ; 2
R(6, 1) = | V:(s)
v =0.9

e Horizon h =2

Recall: !
: Vi(s) i= B[S0 V'R (s1,7 (s2)) | 30 = 8,7
1)) : R(so,a0) ~R(s1,a1)
20%" A0 : Q Q E[R(sp,a0) + -9R(s1,a1)]
4 5 6 :
7 8 9 E 2 terms inside
m(s) = “17, : if s = 1, receive R(1, 1) + yR(1, 1)
R(3, 1) =1 !
R(6, 1) — E V2(s) if sg = 2, receive R(2, 1) + vR(2, 1)
v =0.9 ! if s9 = 3, receive R(3, 1) + vR(3, 1)
__________________ - 0 0 1.9
YR(2, 1) if sg = 4, receive R(4, 1) + yR(1, 1)
. 0 0 | 028 if sg = 5, receive R(5, 1) + yR(2, 1)
20 0 v@
AN if s9 = 6, receive R(6, 1) + v[.2R(2, 1) + .8R(3, 1)]
R(6, 1) @ action 1 0 0o | -
’ if sy = 7,receive R(7, 1) + vR(4, 1)
actiont - -
80% @ if sy = 8, receive R(8, 1) + yR(5, 1)
action 1 if s9 = 9, receive R(9, 1) + vR(6, 1)

YR(3, 1)

Recall: VO(S) olol V7r1(3) ol ol 1 Vf(s) 0] o] 19

™
1 2 3 0|l 0] 0 0| o(—10 ol o [928
Y. |4 R0% -9
0% T ol ol o o o0f o0 0f o0
4 5 6 | . 3
Now, let's think about V*(6)
7 8 9

YR(2,1) YR(2,1)

___________________ action 7

R(6, 1)

action 1 action 1

vR(3, 1) Y R(3,1)

V3(6) = (R(6,1) +20% [v R(2, 1) +72 R(2,1)] +80% [7R3, 1) + 72 R(3, 1) |

— R+ (REERED)] o (RS |
- WG ey @EED e (GO0

Bellman Recursion

expected sum of discounted rewards, for starting

in state s, follow policy 7 (s) for horizon h

Vi(s) = R(s,m(s)) +7) _ T (s,7(s),5)

immediate reward, for being (h = 1) horizon values

in state s and taking the at a next state s’
action given by policy (s) weighted by the probability of getting to

that next state s’

discounted by «

finite-horizon policy evaluation

For a given policy 7 (s), the finite-horizon horizon-h

(state) value functions are:

Vi(s) i= B[S0 ¥R (50,7 (s1)) | 80 = 8,7, Vs

Bellman recursion

Vh(s) = —|—va s,m(s),s) VIt (s),Vs

infinite-horizon policy evaluation

For any given policy 7 (s), the infinite-horizon
(state) value functions are

Vi(s) :=E D20 YR (s, m(s¢)) | so = s,7|,Vs

7 is now necessarily <1 for convergence too

' Bellman equation

Va(s) = R(s,(s)) +7 3 T (s,7(s), 8') V; (5') , Vs

e |S| many linear equations

Optimal policy 7*

« Definition of 7*: for any given horizon h (possibly infinite horizon), V2. (s) >
V(s) for all s € S and for all possible policy .

For a fixed MDP, optimal values V2, (s) must be unique.

Optimal policy 7* might not be unique. (Think e.g. symmetric)

In finite horizon, optimal policy depends on horizon.

In infinite horizon, horizon no longer matter. Exist a stationary optimal policy.

(Optimal) state-action value functions Q" (s, a)

Q" (s, a) is the expected sum of discounted rewards for

o starting in state s,
« take action q, for one step
« act optimally there afterwards for the remaining (h — 1) steps

V values vs. () values

« V is defined over state space; @ is defined over (state, action) space.

 Any policy can be evaluated to get V' values; whereas @ per our definition,
has the sense of "tail optimality" baked in.

« V2, (s) can be derived from Q" (s, a), and vise versa.

() is easier to read "optimal actions" from.

g

Qh(s, a) is the expected sum of discounted rewards for

example: recursively finding Q" (s, a)

o starting in state s,
o take action a, for one step

» act optimally there afterwards for the remaining (h — 1) steps

Recall:

States and
one special
transition:

R(s,a)

v

0.9

4 R0%

: : Recall: v =10.9
Q" (s, a) is the expected sum of discounted rewards for el

¥

o starting in state s, States and A
. one special v |4 o
o take action a, for one step Cansition: T
o act optimally there afterwards for the L
remaining (h — 1) steps |8 | oo
Let's consider Q*(3, —)
1 2 . I
Q (S, a) — R(S, a) Q (S, a) receive R(S, —>)
0 0 1 o next state s’ = 3, act optimally for the
0 X.0]0 ‘ of * 1 ! % remaining one timestep
0
0 0 ~10 = receive maxy Q! (3,a’)
0 0] 0 0 [—-10}-10
0 =1+ .9max, Q! (3,d
0o X 0l 0X ofoX o " « @ (3,0)
0 0 0 = 1.9

: : Recall: v =10.9
Q" (s, a) is the expected sum of discounted rewards for el

¥

e starting in state s, States and R
) one special v |4 g0
o take action a, for one step transition: A
o act optimally there afterwards for the e
remaining (h — 1) steps |8 | oo
Let's consider Q*(3, 1)
1 2 . 1
Q'(s,a) = R(s,a) Q%(s,a) receive R(3, 1)
0 0 1 19 » next state s’ = 3, act optimally for the
0 Y0 0 of *) ! 1.9 remaining one timestep
0
0 0 ~10 = receive maxy Q! (3,a’)
0 01 0 0 [-10X-10
0 =1+ .9maxy Q' (3,d
0 X 0| 0X ofoX o " « @ (3,0)
0 0 0 = 1.9

: Recall: v =10.9
Q" (s, a) is the expected sum of discounted rewards for el

¥

e starting in state s, States an_dl R
) one specia v |a
o take action a, for one step transﬁion: T —
o act optimally there afterwards for the L
remaining (h — 1) steps |8 | oo
Let's consider Q*(3, <)
Q'(s,0) =R(s,0) Q(5,0) © eceive R(3, <)
0 0 1 19 » next state s’ =2, act optimally for the
AN 5 o| ! ; L 139 remaining one timestep
0
0 0 —10 = receive maxy Q! (2,a’)

* Q*(3, <) =R(3, <) +ymaxy Q' (2,a')

0 =1+ .9max, Q' (2,a)

: : Recall: v =10.9
Q" (s, a) is the expected sum of discounted rewards for el

¥

o starting in state s, States and L,
. one special v. |4 o
o take action a, for one step Cransition: R
o act optimally there afterwards for the S
remaining (h — 1) steps |8 | oo
Let's consider Q?(3, |)
1 2 o :
Q'(s,a) = R(s,a) Q%(s,a) receive R(3, |)
0 0 1 19 o next state s’ = 6, act optimally for the
0 010 0 of !) ! L 81'9 remaining one timestep
O J—
0 0 —10 = receive maxy Q! (6,a’)
0 0] 0 0 |-10X-10
NP + Q*(3,1) =R(3, 1) +7maxy Q' (6,4
0 =1+ .9max, Q! (6,d’
0 0] O 0] 0 0 T « @ (’)
0 0 0 _ 3

fn Q" (s, a) is the expected sum of discounted rewards for Recall: 7= 0.9
- o starting in state s, s
« take action a, for one step States and T
) one special A . 6
o act optimally there afterwards for the transition:
remaining (h — 1) steps T | s | oo
Q'(s,a) = R(s,a) Q*(s,a) » receive R(6, 1)
0 0 1 1.9 e act optimally for one more timestep,
1
0 010 h U) ! 2 N at the next state s’
0 —8
0 0 ~10 —9.28 « 20% chance, s’ =2, act optimally,
0 01 0 A 0 _1_1;10 receive max, Q! (2,a’)
0 80% chance, s’ = 3, act optimally,
0) 0f 9 0 0f 9) 0 receive maxy Q' (3,a’)

Let's consider Q%(6,1) = R(6,1) + v[.2max, Q' (2,d’) + .8 max, Q' (3,d')]
=—10+.9[.2%0+ .8 x1] = —9.28

I Q"(s,a) is the expected sum of discounted rewards for Recall: 7= 0.9
2 o starting in state s,

1 2 3
. States and v |4 80%
o take action a, for one step one special REaN
o act optimally there afterwards for the transition:
remaining (h — 1) steps O B
Q1(37a) 0 0 1 Qz(saa’) 1.9
_ 0 oo X ol 1 X1 1 X1.9
_ R(S’ CL) 0 0 1 —8
0 0 —10 <9.28
0 010 0 |—-10X-10}
—10
0
0 0] O 0] O 0
0 0 0

Q%(6,1) =R(6, 1) + v[.2max, Q' (2,ad') + .8 max, Q' (3,d’)]

in general Q"(s,a) = R(s,a) + 7>, T (s,a,s')max, Q" ! (s',a'),Vs,a

I Q"(s,a) is the expected sum of discounted rewards for Recall: 7= 0.9
2 o starting in state s,

1 2 3
« take action a, for one step States and TR
. one special A . o
o act optimally there afterwards for the transition:
remaining (h — 1) steps T | s | oo
Ql(saa) 0 0 1 Qz(saa’) 1.9
0 X ofoX o X1 1 X1.9
0 0 1 -8
0 0 —10 <9.28
0 0 0 0 |-10<-10
0 —10
0 0
0 0f O 0| O 0
0 0 0
what's the optimal action in state 3, with horizon 2, given by 75 (3) =? either up or right

in general 7} (s) = arg max, Q"(s,a), Vs, h

Given the finite horizon recursion
Q"(s,a) =R(s,a) + 732, T (s,a,s") maxy Q" (s, a')
We should easily be convinced of the infinite horizon equation
Q(s,a) 5 R(s,a) +v>., T(s,a,s)maxy Q(s',a’)

Infinite-horizon Value Iteration

l.forse S,a e A:

2. Qold (S, a) =0
3. while True: if instead of relying on
line 6 (convergence
4. forseS,ac A: o
criterion), we run the
5. Quew (8, a) @ v T(s,a,8) maxy Qoa (s',a') block of (line 4 and 5)
6. if max,,|Qold (5,a) — Qnew (5,0) € for h times, then the
7 return Q returned values are
' o exactly horizon-h Q
8. Qold — Qnew

values

We'd appreciate your feedback on the lecture.

Thanks!

https://docs.google.com/forms/d/e/1FAIpQLSdMwDZOmugTpWJIC4QeqCTcfTr9Oujayz4PArd9I_a-mnPRcg/viewform

