
Intro to Machine Learning

https://introml.mit.edu/

Lecture 10: Markov Decision Processes

Shen Shen
April 19, 2024

https://introml.mit.edu/

Outline
Recap: Supervised Learning

Markov Decision Processes

 Mario example
Formal definition

Policy Evaluation

State-Value Functions: -values

Finite horizon (recursion) and infinite horizon (equation)

Optimal Policy and Finding Optimal Policy

General tool: State-action Value Functions: -values

Value iteration

V

Q

https://shenshen.mit.edu/demos/gifs/russ_toddler.gif

Toddler demo, Russ Tedrake thesis, 2004
(Uses vanilla policy gradient (actor-critic))

https://shenshen.mit.edu/demos/gifs/russ_toddler.gif

https://say-can.github.io/img/demo_sequence_compressed.mp4

https://say-can.github.io/img/demo_sequence_compressed.mp4

https://s3.amazonaws.com/media-p.slid.es/videos/1350152/Jg2VLvbO/bi-manual_nutella_on_toast.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/PSVOiCD8/book_page_w__recovery.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/MmRrOmfd/bi-manual_berry_scooping.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/M1Uv4St7/bi-manual_potato_peeling.mp4

(The demo won't embed in PDF. But the direct link below works.)

https://learning-to-paint.github.io

https://learning-to-paint.github.io/

Text

Reinforcement Learning with Human Feedback

Markov Decision Processes

Foundational tools and concept to understand RL.
Research area initiated in the 1950s (Bellman), known under various names (in various
communities):

Stochastic optimal control (Control theory)
Stochastic shortest path (Operations research)
Sequential decision making under uncertainty (Economics)
Dynamic programming, control of dynamical systems (under uncertainty)
Reinforcement learning (Artificial Intelligence, Machine Learning)

A rich variety of (accessible & elegant) theory/math, algorithms, and
applications/illustrations
As a result, quite a large variations of notations.
We will use the most RL-flavored notation

almost all transitions are deterministic:

Normally, actions take Mario to the “intended” state.

E.g., in state (7), action “↑” gets to state (4)

If an action would've taken us out of this world, stay put

E.g., in state (9), action “→” gets back to state (9)

except, in state (6), action “↑” leads to two possibilities:

20% chance ends in (2)

80% chance ends in (3)

1 2

987

54

3

6

80%
20%

Running example: Mario in a grid-world

9 possible states

4 possible actions: {Up ↑, Down ↓, Left ←, Right →}

1 2

987

54

3

6

80%
20%

example cont'd

1

1
1 1

−10

−10
−10 −10

reward of being in state 3, taking action ↑reward of being in state 3, taking action ↓reward of being in state 6, taking action ↓reward of being in state 6, taking action →

In state (3), any action gets reward +1

(state, action) pair can get Mario rewards:

Any other (state, action) pairs get reward 0

In state (6), any action gets reward -10

actions: {Up ↑, Down ↓,
Left ←, Right →}

goal is to find a gameplay strategy for Mario, to

 get maximum sum of rewards
get these rewards as soon as possible

Definition and Goal
 : state space, contains all possible states .S s

 : action space, contains all possible actions .A a

 : the probability of transition from state to when
action is taken.
T s, a, s(′) s s′

a

 : a function that takes in the (state, action) and returns
a reward.
R(s, a)

: discount factor, a scalar.γ ∈ [0, 1]

 : policy, takes in a state and returns an action.π(s)

Ultimate goal of an MDP: Find the "best" policy .π

Sidenote:

In 6.390, is
deterministic and
bounded.

R(s, a)

In 6.390, is
deterministic.

π(s)

In this week, and
 are discrete set,

i.e. have finite
elements (in fact,
typically quite
small)

S

A

State s

Action a

Reward r

…
Policy π(s)

Transition T s, a, s(′)

Reward R(s, a)

a trajectory (aka an experience or rollout) τ = s , a , r , s , a , r ,…(0 0 0 1 1 1)

r =0
R(s , a)0 0

r =1
R(s , a)1 1

r =2
R(s , a)2 2

r =4
R(s , a)4 4

r =5
R(s , a)5 5

r =6
R(s , a)6 6

r =7
R(s , a)7 7

…
r =3

R(s , a)3 3

R(s , a)0 0 γR(s , a)1 1 γ R(s , a)3
3 3γ R(s , a)2

2 2 γ R(s , a)4
4 4 γ R(s , a)5

5 5 γ R(s , a)6
6 6 γ R(s , a)7

7 7 …+ + + + + + +

time

how "good" is a trajectory?

time
State s

Action a

Reward r

…
Policy π(s)

Transition T s, a, s(′)

Reward R(s, a)

a trajectory (aka an experience or rollout) τ = s , a , r , s , a , r ,…(0 0 0 1 1 1)

r =0
R(s , a)0 0

r =1
R(s , a)1 1

r =2
R(s , a)2 2

r =4
R(s , a)4 4

r =5
R(s , a)5 5

r =6
R(s , a)6 6

r =7
R(s , a)7 7

…
r =3

R(s , a)3 3

R(s , a)0 0 γR(s , a)1 1 γ R(s , a)3
3 3γ R(s , a)2

2 2 γ R(s , a)4
4 4 γ R(s , a)5

5 5 γ R(s , a)6
6 6 γ R(s , a)7

7 7 …+ + + + + + +

Now, suppose the horizon (how many time steps), and the initial state are given.
Also, recall the rewards and policy are deterministic.
There would still be randomness in a trajectory, due to stochastic transition.
That is, we cannot just evaluate

h s0

R(s, a) π(s)

For a given policy the finite-horizon horizon- (state) value functions are:π(s), h

V (s) :=π
h E γ R s ,π s ∣ s = s,π , ∀s,h[∑t=0

h−1 t (t (t)) 0]

π(s) V (s)π

MDP
Policy evaluation

expected sum of discounted rewards, for starting in state following policy for
horizon
expectation w.r.t. stochastic transition.
horizon-0 values are all 0.
value is a long-term thing, reward is a one-time thing.

s, π(s),
h.

R(s , a)0 0 γR(s , a)1 1 γ R(s , a)3
3 3γ R(s , a)2

2 2 γ R(s , a)4
4 4 γ R(s , a)5

5 5 γ R(s , a)6
6 6 γ R(s , a)7

7 7 …+ + + + + + +E[]

Recall:

1 2

987

54

3

6

80%
20%

example: evaluating the "always " policy↑

 for all other seven states

π(s) = ‘‘ ↑ ", ∀s

R(3, ↑) = 1

R(6, ↑) = −10

R(s, ↑) = 0

Suppose γ = 0.9

Horizon = 0;
nothing happens

h

Horizon = 1: simply
receiving the rewards

h

0 0

000

00

0

0

0 0

000

00

1

−10

V (s)π
0

V (s) :=π
h E γ R s ,π s ∣ s = s,π , ∀s,h[∑t=0

h−1 t (t (t)) 0]

R(s , a)0 0 .9R(s , a)1 1 (.9) R(s , a)2
2 2 …+ +E[]

V (s)π
1

 terms insideh

Recall:

π(s) = ‘‘ ↑ ", ∀s

R(3, ↑) = 1

R(6, ↑) = −10

γ = 0.9

1 2

987

54

3

6

80%
20%

Horizon = 2h

R(s , a)0 0 γR(s , a)1 1

V (s) :=π
h E γ R s ,π s ∣ s = s,π[∑t=0

h−1 t (t (t)) 0]

V (s)π
2

R(s , a)0 0 .9R(s , a)1 1+E[]

 terms inside2

Recall:

π(s) = ‘‘ ↑ ", ∀s

R(3, ↑) = 1

R(6, ↑) = −10

γ = 0.9

−900

0 −9.28

1 2

987

54

3

6

80%
20%

R(s , a)0 0 γR(s , a)1 1

Horizon = 2h

0

if s =0 1, receive R(1, ↑) + γR(1, ↑)

receive R(6, ↑) + γ[.2R(2, ↑) + .8R(3, ↑)]

if s =0 8, receive R(8, ↑) + γR(5, ↑)

R(s , a)0 0 .9R(s , a)1 1+E[]

 terms inside2

0

if s =0 2, receive R(2, ↑) + γR(2, ↑)

1.9
if s =0 3, receive R(3, ↑) + γR(3, ↑)

V (s) :=π
h E γ R s ,π s ∣ s = s,π[∑t=0

h−1 t (t (t)) 0]

0

V (s)π
2

if s =0 4, receive R(4, ↑) + γR(1, ↑)

if s =0 7, receive R(7, ↑) + γR(4, ↑)

if s =0 9, receive R(9, ↑) + γR(6, ↑)

if s =0 6,

if s =0 5, receive R(5, ↑) + γR(2, ↑)

6
action ↑

R(6, ↑)

2

3

action ↑

action ↑

R(3, ↑)γ

20%

80%

R(2, ↑)γ

0 0

000

00

0

0

0 0

−900

00

1.9

−9.28

0 0

000

00

1

−10

V (s)π
0 V (s)π

1 V (s)π
2

Now, let's think about V (6)π
3

2

3

action ↑

action ↑

R(3, ↑)

R(2, ↑)γ2

γ2

γ2R(2, ↑)

R(3, ↑)γ2

6
action ↑

R(6, ↑)R(6, ↑)

Recall:

π(s) = ‘‘ ↑ ", ∀s

R(3, ↑) = 1

R(6, ↑) = −10

γ = 0.9

2

3

action ↑

action ↑

R(2, ↑)

R(3, ↑)

γ

γ

R(2, ↑)γ

R(3, ↑)γ

20%20%

80%80%

1 2

987

54

3

6

80%
20%

V (6) =π
3 R(6, ↑) R(2, ↑)γ γ2 R(2, ↑)20% [+ +] R(3, ↑)γ R(3, ↑)γ280% [+ +]

+ R(2, ↑)γ γ R(2, ↑)20% [+]R(6, ↑)= R(3, ↑)γ R(3, ↑)80% [+ +]γ

R(6, ↑)= γ20%+ V (2)π
2 γ80%+ V (3)π

2

Bellman Recursion
expected sum of discounted rewards, for starting

in state follow policy for horizon s, π(s) h

V (s) =π
h R(s,π(s)) + γ T s,π(s), s V s

s′

∑ (′) π
h−1 (′)

immediate reward, for being
in state and taking the
action given by policy

s

π(s) weighted by the probability of getting to
that next state s′

 horizon values
at a next state

(h− 1)

s′

discounted by γ

finite-horizon policy evaluation infinite-horizon policy evaluation

 is now necessarily <1 for convergence too γ

Bellman equation

 many linear equations∣S∣

For any given policy the infinite-horizon

(state) value functions are

π(s),

V (s) :=π E γ R s ,π s ∣ s = s,π , ∀s[∑t=0
∞ t (t (t)) 0]

V (s) =π R(s,π(s)) + γ T s,π(s), s V s , ∀s
s′

∑ (′) π (′)

For a given policy the finite-horizon horizon-

(state) value functions are:

π(s), h

V (s) :=π
h E γ R s ,π s ∣ s = s,π , ∀s[∑t=0

h−1 t (t (t)) 0]

Bellman recursion

V (s) =π
h R(s,π(s)) + γ T s,π(s), s V s , ∀s

s′

∑ (′) π
h−1 (′)

Definition of : for any given horizon (possibly infinite horizon),
 for all and for all possible policy .

For a fixed MDP, optimal values must be unique.
Optimal policy might not be unique. (Think e.g. symmetric)
In finite horizon, optimal policy depends on horizon.
In infinite horizon, horizon no longer matter. Exist a stationary optimal policy.

π∗ h V (s) ⩾π∗
h

V (s)π
h s ∈ S π

V (s)π∗
h

π∗

Optimal policy π∗

 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,s
take action , for one stepa

act optimally there afterwards for the remaining steps(h− 1)

(Optimal) state-action value functions Q (s, a)h

 values vs. valuesV Q

 is defined over state space; is defined over (state, action) space.V Q

Any policy can be evaluated to get values; whereas per our definition,
has the sense of "tail optimality" baked in.

V Q

 can be derived from , and vise versa.V (s)π∗
h Q (s, a)h

 is easier to read "optimal actions" from.Q

Recall:

1 2

987

54

3

6

80%
20%

example: recursively finding Q (s, a)h
γ = 0.9

 is the expected sum of discounted rewards forQ (s, a)h

1

1
1 1

−10

−10

−10
−10Q (s, a)0

0 00

0 00

0 00

0 00

0 00

0 000 000 000 00

0 00

0 000 0 0

0 000 0 0

0 000 0 0

States and
one special
transition:

R(s, a)

0 0

0 0

0 1

0 −100

0 0

0 000 00 00 0

0 00

0 000 1
1

0 000

0 000

0 000 0 0

Q (s, a)1

−10

1

−10
−10

starting in state ,s
take action , for one stepa

act optimally there afterwards for the remaining steps(h− 1)

Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0 000 1
1

0 000

0 000

0 000 0 0

Q (s, a) =1 R(s, a)

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Let's consider Q (3, →2)

receive R(3, →)

= 1 + .9max Q 3, aa′
1 (′)

next state = 3, act optimally for the
remaining one timestep

receive

s′

max Q 3, aa′
1 (′)

Q (3, →2) = R(3, →) + γmax Q 3, aa′
1 (′)

= 1.9

0

0

0

0

1.9

Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0 000 1
1

0 000

0 000

0 000 0 0

Q (s, a) =1 R(s, a)

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Let's consider Q (3, ↑2)

receive R(3, ↑)

= 1 + .9max Q 3, aa′
1 (′)

next state = 3, act optimally for the
remaining one timestep

receive

s′

max Q 3, aa′
1 (′)

Q (3, ↑2) = R(3, ↑) + γmax Q 3, aa′
1 (′)

= 1.9

0

0

0

0

1.9
1.9

States and
one special
transition:

Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0 000 1
1

000

0 000

0 000 0 0

Q (s, a) =1 R(s, a)

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Let's consider Q (3, ←2)

receive R(3, ←)

= 1 + .9max Q 2, aa′
1 (′)

next state = 2, act optimally for the
remaining one timestep

receive

s′

max Q 2, aa′
1 (′)

Q (3, ←2) = R(3, ←) + γmax Q 2, aa′
1 (′)

= 1

0

0

0

0

1.9
1.9

1

Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0
0

000 1
1

000

0 000

0

000 0 0

Q (s, a) =1 R(s, a)

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Let's consider Q (3, ↓2)

receive R(3, ↓)

= 1 + .9max Q 6, aa′
1 (′)

next state = 6, act optimally for the
remaining one timestep

receive

s′

max Q 6, aa′
1 (′)

Q (3, ↓2) = R(3, ↓) + γmax Q 6, aa′
1 (′)

= −8

0

0

0

0

1.9
1.9

1
−8

Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0
0

000 1
1

000

0 000

0

000 0 0

Q (s, a) =1 R(s, a)

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Let's consider Q (6, ↑2)

receive R(6, ↑)
act optimally for one more timestep,
at the next state s′

= R(6, ↑) + γ[.2max Q 2, a +a′
1 (′) .8max Q 3, a]a′

1 (′)

0

0

0

0

1.9
1.9

1
−8

20% chance, = 2, act optimally,
receive

s′

max Q 2, aa′
1 (′)

80% chance, = 3, act optimally,
receive

s′

max Q 3, aa′
1 (′)

−9.28

= −10 + .9[.2 ∗ 0 + .8 ∗ 1] = −9.28

Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0

000 1
1

000

0 000

0

000 0 0

Q (s, a)1

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Q (6, ↑2) = R(6, ↑) + γ[.2max Q 2, a +a′
1 (′) .8max Q 3, a]a′

1 (′)

0

0

0

0

1.9
1.9

1
−8

−9.28

Q (s, a) =h R(s, a) + γ T s, a, s max Q s , a , ∀s, a∑s′ (′) a′
h−1 (′ ′)

= R(s, a)

in general

Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0

000 1
1

000

0 000

0

000 0 0

Q (s, a)1

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

0

0

0

0

1.9
1.9

1
−8

−9.28

π (s) =h
∗ argmax Q (s, a), ∀s,ha

h

what's the optimal action in state 3, with horizon 2, given by

π (3) =2
∗ ?

in general

either up or right

Given the finite horizon recursion

Q(s, a) = R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ (′ ′)

1. for :
2.
3. while True:
4. for :
5.
6. if
7. return
8.

s ∈ S, a ∈ A

Q (s, a) =old 0

s ∈ S, a ∈ A

Q (s, a) ←new R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ old (′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old new ∣ ϵ :

Qnew

Q ←old Qnew

Q (s, a) =h R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′
h−1 (′ ′)

We should easily be convinced of the infinite horizon equation

Infinite-horizon Value Iteration

if instead of relying on
line 6 (convergence

criterion), we run the
block of (line 4 and 5)
for times, then the
returned values are
exactly horizon- Q

values

h

h

Thanks!

We'd appreciate your on the lecture.feedback

https://docs.google.com/forms/d/e/1FAIpQLSdMwDZOmugTpWJIC4QeqCTcfTr9Oujayz4PArd9I_a-mnPRcg/viewform

