
Intro to Machine Learning

https://introml.mit.edu/

Lecture 8: Transformers

Shen Shen
April 5, 2024

(many slides adapted from and)Phillip Isola Kaiming He

https://introml.mit.edu/
https://web.mit.edu/phillipi/
https://kaiminghe.github.io/

Outline
Recap: CNN
Transformers

Tokens
Attention
Self-attention
Learned Embedding
Full-stack

(Applications and interpretation)

[Photo by on]Zayn Shah Unsplash

redgreenblue

https://unsplash.com/@zaynshah
http://unsplash.com/s/photos/mit-stata

[Photo by on]Zayn Shah Unsplash

image channels

image width

image
height

https://unsplash.com/@zaynshah
http://unsplash.com/s/photos/mit-stata

image channels

image width

image
height

input tensor

filter output

3d tensor input, depth
3d tensor filter, depth
2d tensor (matrix) output

d

d

input tensor

filters outputs

… …

input tensor

filters output tensor
…

3d tensor input, depth
 3d filters:

each filter of depth
each filter makes a 2d tensor
(matrix) output

total output 3d tensor, depth

d

k

d

k

…

[image credit: medium]

cont'd

Paperswithcode

https://paperswithcode.com/sota/image-classification-on-imagenet

Enduring principles:

1. Chop up signal into patches (divide and conquer)
2. Process each patch identically (and in parallel)

Lessons from CNNs

Enduring principles:

1. Chop up signal into patches (divide and conquer)
2. Process each patch identically (and in parallel)

Follow the same principles:
1. via tokenization
2. via attention mechanism

Transformers

(conceptually: transformers are CNNs where the filter weights -- or here the attention --
dynamically change depending on the patch)

Outline
Recap: CNN
Transformers

Tokens
Attention
Self-attention
Learned Embedding
Full-stack

(Applications and interpretation)

A token is just transformer lingo for a vector of neurons
But the connotation is that a token is an encapsulated bundle of information;
with transformers we will operate over tokens rather than over neurons

Tokens

x ∈(i) Rd

Token notations

- is the size of each token ()
- is the number of tokens
d x ∈(i) Rd

n

Outline
Recap: CNN
Transformers

Tokens
Attention
Self-attention
Learned Embedding
Full-stack

(Applications and interpretation)

dict_fr2en = {
"pomme": "apple",
"banane": "banana",
"citron": "lemon"
}

Attention mechanism
Let's start by thinking about dictionary look up

dict_fr2en = {
"pomme": "apple",
"banane": "banana",
"citron": "lemon"
}

query = "citron"
output = dict_fr2en[query]

dict_fr2en = {
"pomme": "apple",
"banane": "banana",
"citron": "lemon"
}

query = "citron"
output = dict_fr2en[query]

dict_fr2en = {
"pomme": "apple",
"banane": "banana",
"citron": "lemon"
}

What if we'd like to run
query = "orange"
output = dict_fr2en[query]

Python would complain.

output = 0.8 * "lemon" + 0.1 * "apple"
+ 0.1 * "banana"

But you might see the rationale of:

Why did the weights make sense?[0.8, 0.1, 0.1]

"soft" look up.
Actually one way of understanding "attention"

Can we generalize the thought process
somewhat?

Sensible "abstraction/embedding"

(though python would still complain)

Single-query example:

Attention

s =j (q k)T
j

softmax([q k , q k , q k ,… , q k]/)⊤
1

⊤
2

⊤
3

⊤
n dk

1. Similarity score w/ key :j

2. Attention weights (softmax'd scores):

3. Output: attention-weighted sum:

= [e , e ,… , e]/Σ es1 s2 sn
j

sj

y = a v∑
j

j j

: number of keys
: dim(query embedding)
: dim(key embedding)
: dim(value embedding)

n

dq

dk

dv

/ dk

a =

= softmax([s , s , s ,… , s])1 2 3 n

s =ij (q k)i
T

j

1. Similarity score of (query and key):i j

2. Attention weights (softmax'd scores):

3. Output: attention-weighted sum: : number of queries
: number of keys
: dim(query embedding)
: dim(key embedding)
: dim(value embedding)

nq

nk

dq

dk

dv

/ dk

A = ∈

a1
a2

⋮
anq

Rn ×nq k

Multi-query example:

For each query i,
a =i softmax([s , s , s , … , s])i1 i2 i3 ink

Stack all such verticallyai

y = ∈

y1
y2

⋮
ynq

Rn ×dq v

For each query i, y =i a v∑j ij j

Stack all such verticallyyi

A ∈ Rn ×nq k

Comments:

y ∈ Rn ×dq v

Attention says nothing about how to get
queries/keys/values.
Attention itself is parameter-free.
Shapewise, we only need:

 (so we often omit)d =k dq dq

any other shapes need not match:
 need not equal nq nk

 need not equal dv dk

Note all queries are processed in parallel.
No cross-wiring between queries.
Any output is connected to every value and
every key, but only its corresponding query.

 This is the vanilla default attention mechanism, aka,
"query-key-value dot-product cross attention".
One such attention mechanism is called one "Head"

: number of queries
: number of keys
: dim(query embedding)
: dim(key embedding)
: dim(value embedding)

nq

nk

dq

dk

dv

Multi-head Attention Rather than having just one way of
attending, why not have multiple?

Repeat in parallel
One head

Outline
Recap: CNN
Transformers

Tokens
Attention
Self-attention
Learned Embedding
Full-stack

(Applications and interpretation)

Self-attention
query, key, value sequences: all produced by the same input sequence itself.

命 運 我 操 縱

: number of input tokens
(here =5)

: input token dimension (3)
 = = (4)

n

n

d

dk dq dv

tokenization

x(1) x(2) x(3) x(4) x(5) input token

learned projection

query, key, value token sequences

attention head

Take the 3rd input token as example, how do we get the 3rd output token?

命 運 我 操 縱

tokenization

x(1) x(2) x(3) x(4) x(5) input token

learned projection

query, key, value token sequences

attention head

3rd output token

Take the 3rd input token as example,
how do we get the 3rd output token?

命 運 我 操 縱 tokenization

x(1) x(2) x(3) x(4) x(5) input token

learned projection

query, key, value token sequences

softmax one attention head

the 3rd output token

Outline
Recap: CNN
Transformers

Tokens
Attention
Self-attention
Learned Embedding
Full-stack

(Applications and interpretation)

x ∈(i) Rd

q ∈(i) Rdk

k ∈(i) Rdk

v ∈(i) Rdk

Which color is query/key/value respectively?

How do we go from to ?x q, k, v

via learned projection weights

命

Wk

Wv

Wq

x ∈(i) Rd

q ∈(i) Rdk

k ∈(i) Rdk

v ∈(i) Rdk

Importantly, all these learned projection weights are shared along the token sequence:W

命 運

Wk

Wv
Wq

These three weights -- once learned -- do not change based on input token
If the input sequence had been longer, we can still use the same weights in the same fashion -
-- just maps to a longer output sequence.
This is yet another parallel processing (similar to convolution)
But each do depend on the corresponding input (can be interpreted as dynamically
changing convolution filter weights)

W x.

(q, k, v) x

我 操 縱

x(1)
x(2) x(3) x(4) x(5)

Wk

Wv
Wq Wk

Wv
WqWk

Wv
WqWk

Wv
WqWk

Wv
Wq

Outline
Recap: CNN
Transformers

Tokens
Attention
Self-attention
Learned Embedding
Full-stack

(Applications and interpretation)

Transformers
Some other ideas commonly used in practice:

Causal attention
Residual connection
Layer Normalization

Causal self-attention

(via masking)

Transformers

All parameters are in projection

 are the most specific to transforms
MLP (i.e. fully-connected layers) could have their
own weights too; same idea as week 6 NN

W ,W ,Wq k v

(

Multi-modality (text + image)

notice how query and (keyvalue) come
from different inputs?
similar to the dictionary example
unlike the self-attention translation
example.

Success mode:

[“DINO”, Caron et all. 2021]

https://s3.amazonaws.com/media-p.slid.es/videos/1146306/tTZfnlVt/dino_example.mp4

Failure mode:

)

Thanks
(for your attention :)!

We'd love it for you to share some lecture .feedback

https://docs.google.com/forms/d/e/1FAIpQLSdOWx_ix98PNUX-ur1UG6OWf7aMaSir9pkA8-ZAfkOwIswCxw/viewform?usp=sf_link

