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Recap: Backpropogation
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convolutional
neural

networks

1. Why do we need a special network for images?
2. Why is CNN (the) special network for images?

9



Why do we
need a special net for images?



https://s3.amazonaws.com/media-p.slid.es/videos/1146306/UFBlWXWd/scale11.mp4


https://s3.amazonaws.com/media-p.slid.es/videos/1146306/nJYZeUKm/sacle22-1.mp4


https://s3.amazonaws.com/media-p.slid.es/videos/1146306/Tyec727Z/scale22-2.mp4


Q: Why do we need a specialized network?

👈 426-by-426 grayscale image
 
Use the same small 2-layer network?
need to learn ~3M parameters
 
Imagine even higher-resolution images, or more complex
tasks...

A:  fully-connected nets don't scale well to (interesting) images
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https://s3.amazonaws.com/media-p.slid.es/videos/1146306/WJjoiZtC/level1.mp4


https://s3.amazonaws.com/media-p.slid.es/videos/1146306/c9vaPrS1/level2.mp4


https://s3.amazonaws.com/media-p.slid.es/videos/1146306/c9vaPrS1/level2.mp4


Visual hierarchy

layering would help
take care of that



Visual hierarchy

Spatial locality

Translational
invariance



CNN cleverly exploits

via
layering (with nonlinear activations) 
convolution
pooling

to handle images efficiently

Visual hierarchy
Spatial locality

Translational invariance
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Convolutional layer might sound foreign, but... 
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A tender intro to tensor:

[image credit:  ]tensorflow

https://www.tensorflow.org/guide/tensor


[Photo by  on ]Zayn Shah Unsplash

redgreenblue

https://unsplash.com/@zaynshah
http://unsplash.com/s/photos/mit-stata


[Photo by  on ]Zayn Shah Unsplash
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https://unsplash.com/@zaynshah
http://unsplash.com/s/photos/mit-stata
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input tensor

filter output

3d tensor input, depth 
3d tensor filter, depth 
2d tensor (matrix) output

d

d



input tensor

filters outputs
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[image credit: medium]
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sliding window
(w. stride)

sliding window
(w. stride)

convolution max pooling
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Thanks!

We'd love it for you to share some lecture .feedback

https://docs.google.com/forms/d/1S9n_iwLrSaUpUeMW3UpatBa70hvdmPahpAV91VcarTE/

