

https://introml.mit.edu/

6.390 Intro to Machine Learning

Lecture 7: Convolutional Neural Networks

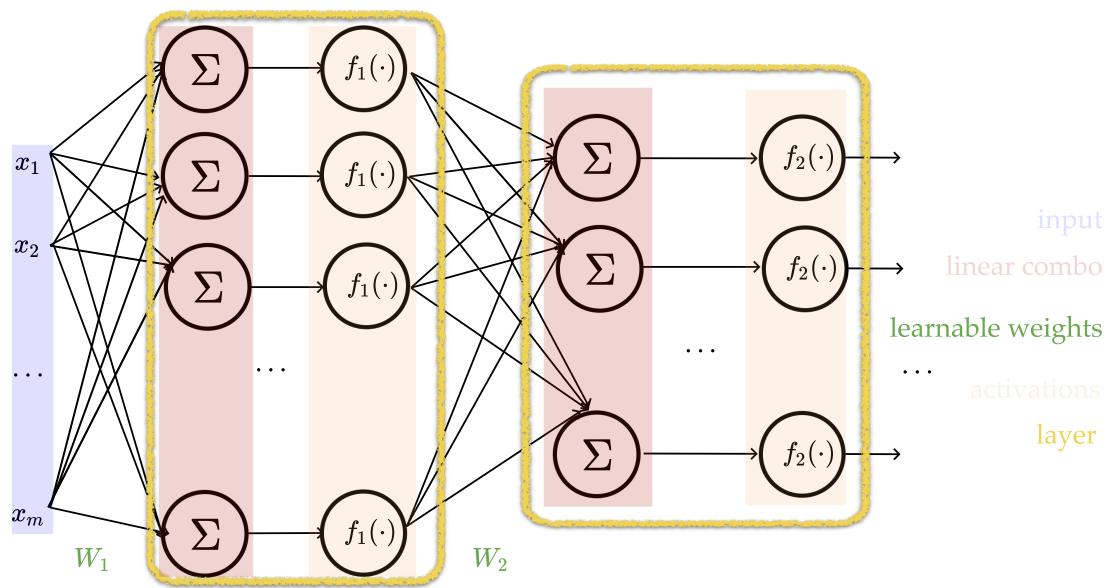
Shen Shen March 22, 2024

(videos edited from 3b1b; some slides adapted from Phillip Isola and Kaiming He)

Outline

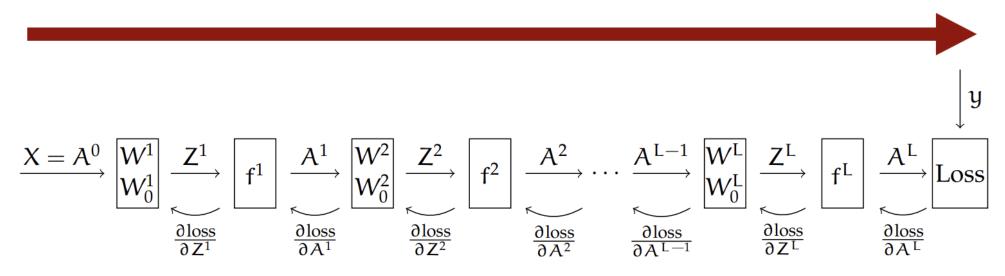
- Recap (fully-connected net)
- Motivation and big picture ideas of CNN
- Convolution operation
 - 1d and 2d convolution mechanics
 - interpretation:
 - local connectivity
 - weight sharing
 - 3d tensors
- Max pooling
 - Larger window
- Typical architecture and summary

A (feed-forward) neural network is



Recap: Backpropogation

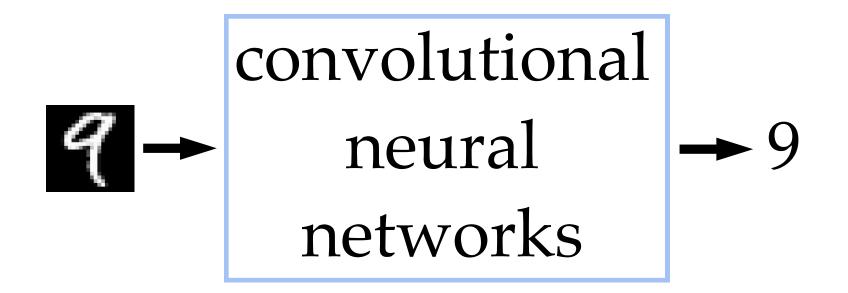
Forward propagation to obtain the output (model's guess)



Backpropagation to obtain gradients with respect to the loss

Outline

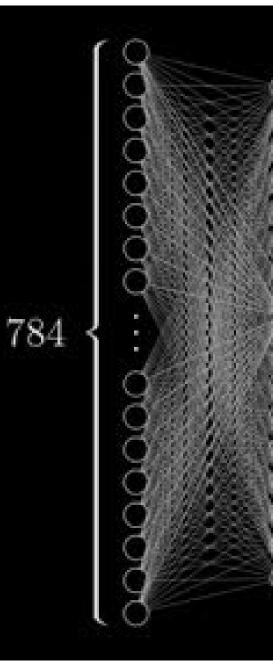
- Recap (fully-connected net)
- Motivation and big picture ideas of CNN
- Convolution operation
 - 1d and 2d convolution mechanics
 - interpretation:
 - local connectivity
 - \circ weight sharing
 - 3d tensors
- Max pooling
 - Larger window
- Typical architecture and summary



1. Why do we need a special network for images?
2. Why is CNN (the) special network for images?

Why do we need a special net for images?

784 weights per neuron



784×16 weights 16 biases

→ 426-by-426 grayscale image

Use the same small 2-layer network? need to learn ~3M parameters

Imagine even higher-resolution images, or more complex tasks...

Q: Why do we need a specialized network?

A: fully-connected nets don't scale well to (interesting) images

Why do we think

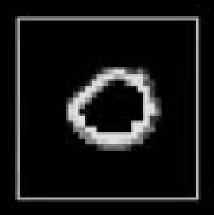
9?

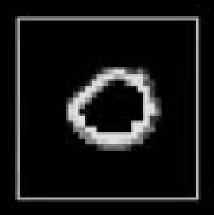
Why do we think any of

9999999999999999999999

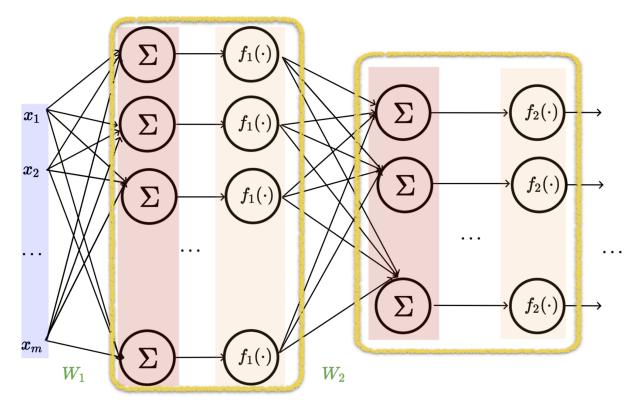
is a

9?





• Visual hierarchy



layering would help take care of that • Visual hierarchy

• Spatial locality

• Translational invariance

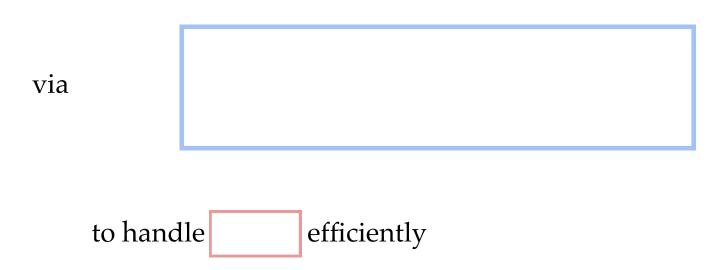
CNN cleverly exploits

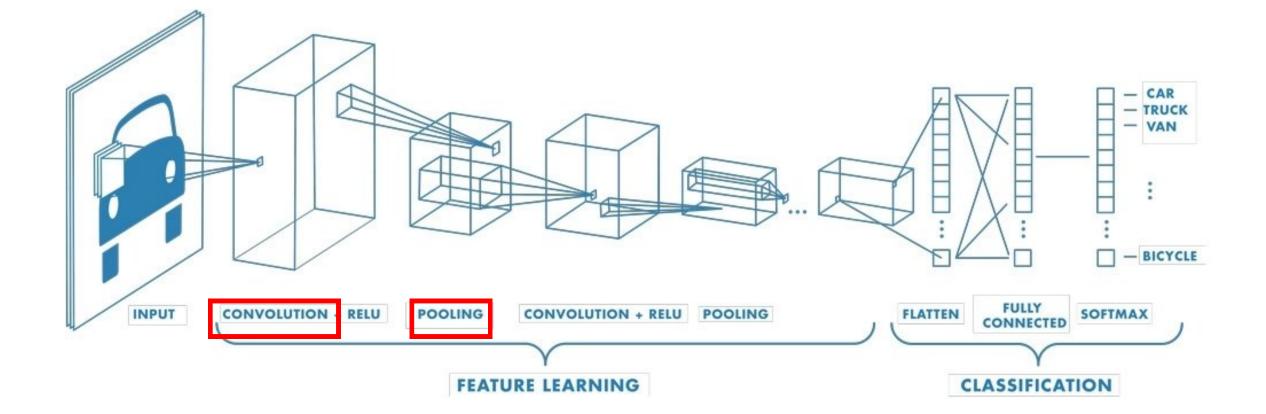
- Visual hierarchy
- Spatial locality
- Translational invariance

via

- layering (with nonlinear activations)
- convolution
- pooling

to handle images efficiently



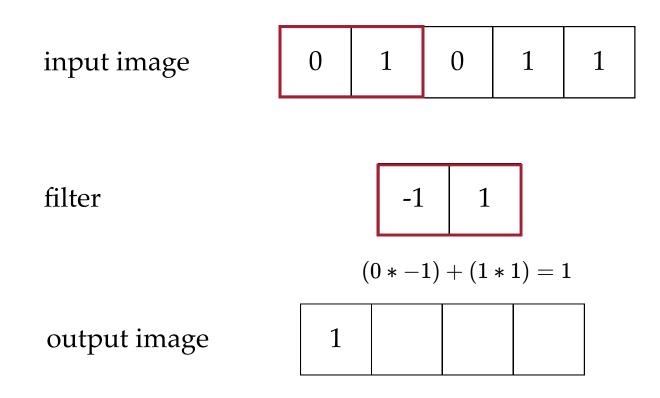


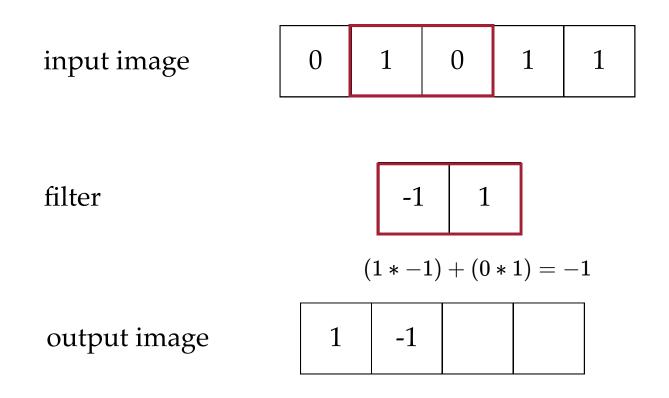
Outline

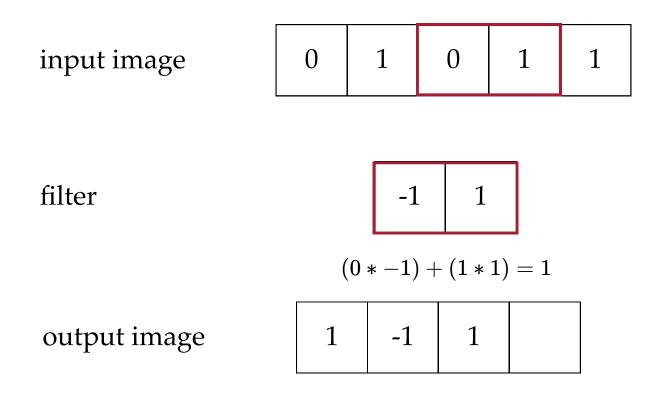
- Recap (fully-connected net)
- Motivation and big picture ideas of CNN
- Convolution operation
 - 1d and 2d convolution mechanics
 - interpretation:
 - local connectivity
 - \circ weight sharing
 - 3d tensors
- Max pooling
 - Larger window
- Typical architecture and summary

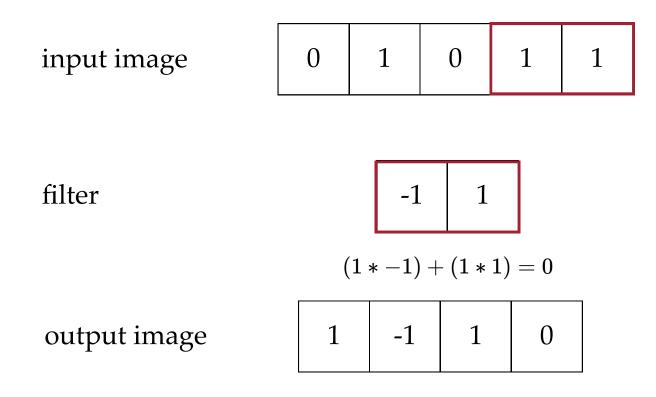
Convolutional layer might sound foreign, but...

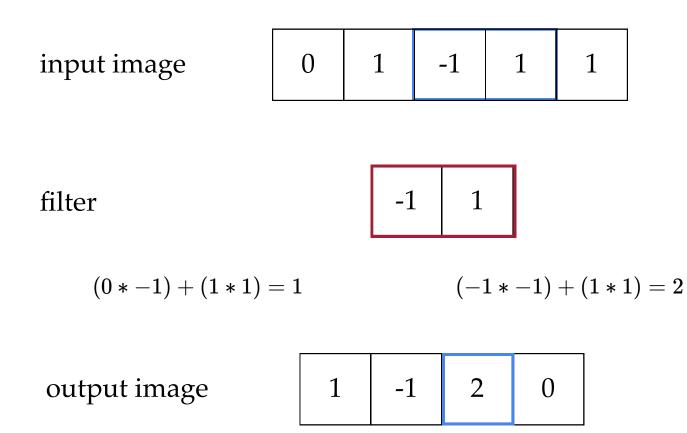
Layer	Forward-pass {do}	Back-prop {learn}
Fully-connected	Dot-product	Neurons
Convolutional	Convolution	Filters (kernels)



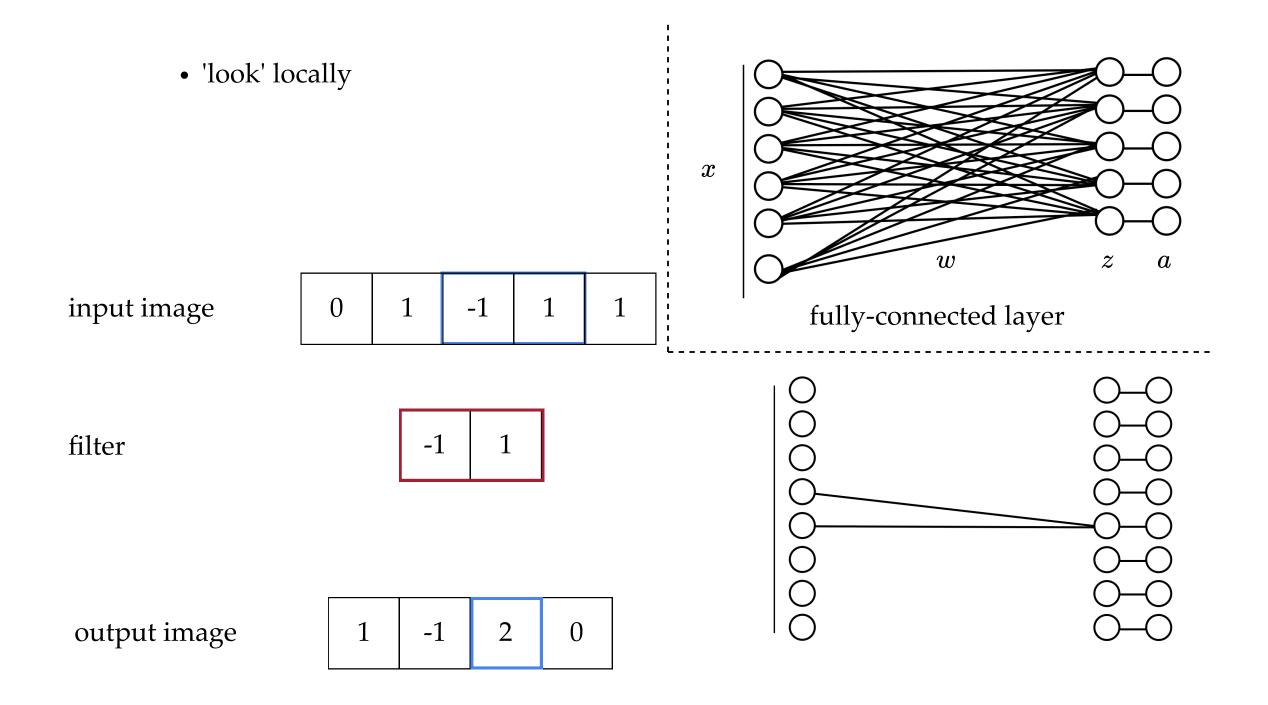




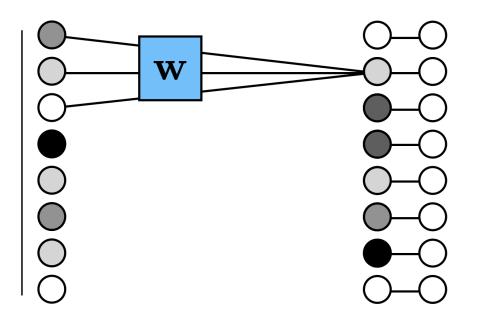


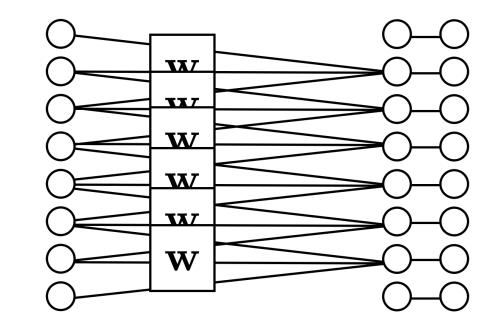


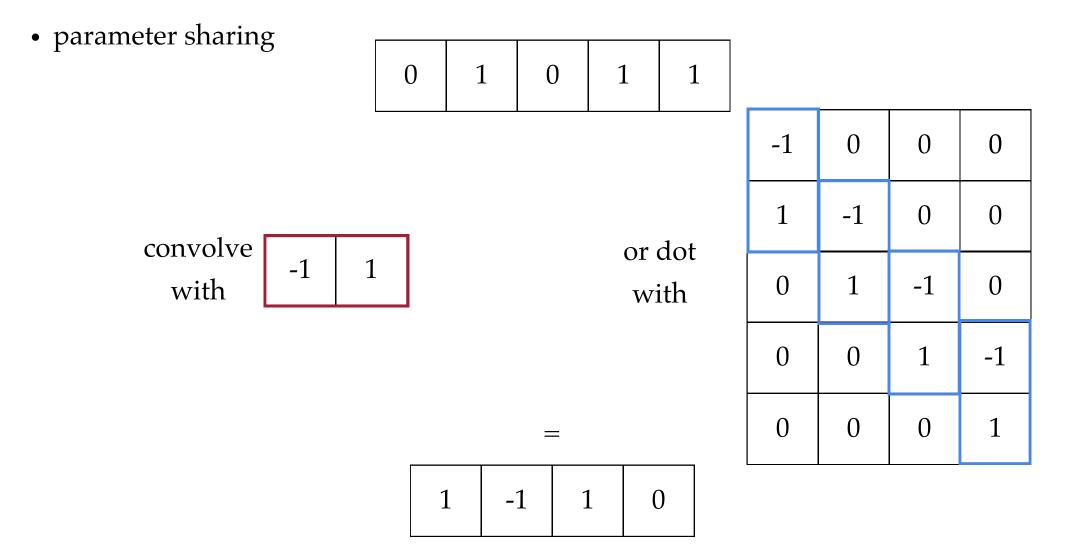
- 'look' locally
- parameter sharing
- "template" matching

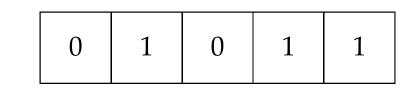


• parameter sharing









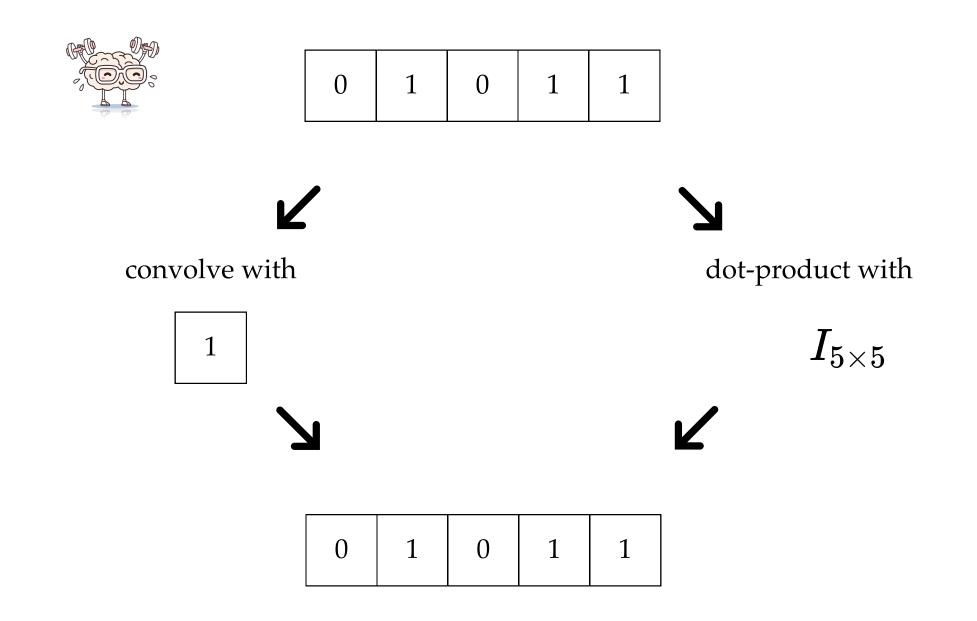
convolve with ?

dot-product with ?

=

=

0	1	0	1	1



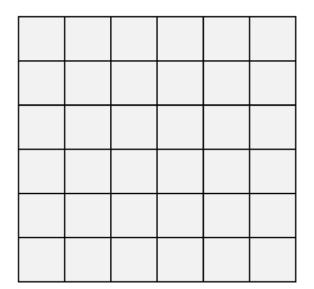
Convolution: a 2-D example

input

0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	1	1	1	0	0	0
0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0

_	filter						
	1 2 1						
	0 0 0						
	-1 -2 -1						

output



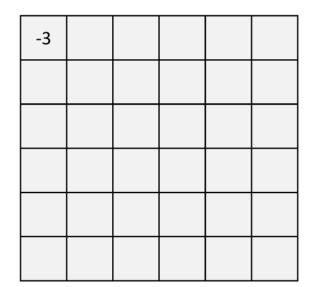
Convolution: a 2-D example

input

0,	00	0.	ο	0	0	0	0
1 1	2	<u>1</u>	ļ Č				
0 0	0 ⁰	0 0	0	0	1	1	0
⁰ -1	¹ -2	¹ -1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	1	1	1	0	0	0
0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0

filter						
1 2 1						
0 0 0						
-1 -2 -1						

output



Convolution: a 2-D example

input

	_						
0	⁰ 1	⁰ 2	⁰ 1	0	0	0	0
0	0 ⁰	0 ⁰	0 ⁰	0	1	1	0
0	¹ -1	¹ -2	¹ -1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	1	1	1	0	0	0
0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0

_	filter						
	1 2 1						
	0 0 0						
	-1 -2 -1						

output

-3	-4		

Convolution: a 2-D example

input

0	0	⁰ 1	⁰ 2	⁰ 1	0	0	0
0	0	0 0	⁰ 0	0 ⁰	1	1	0
0	1	¹ -1	¹ -2	¹ -1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	1	1	1	0	0	0
0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0

_	filter							
	1 2 1							
	0	0	0					
	-1	-2	-1					

-3	-4	-4		

Convolution: a 2-D example

input

0	0	0	⁰ 1	⁰ 2	⁰ 1	0	0
0	0	0	0 0	0 ⁰	¹ 0	1	0
0	1	1	¹ -1	¹ -2	¹ -1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	1	1	1	0	0	0
0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0

_	filter							
	1 2 1							
	0	0	0					
	-1	-2	-1					

-3	-4	-4	-4	

Convolution: a 2-D example

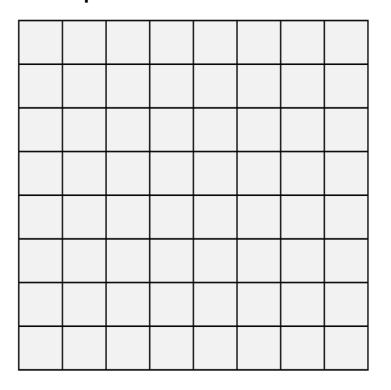
input

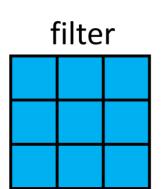
0	0	0	0	0	⁰ -1	⁰ -2	⁰ -1
0	0	1	1	1	0 0	0 0	0 0
0	0	1	1	1	⁰ 1	⁰ 2	⁰ 1
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	0

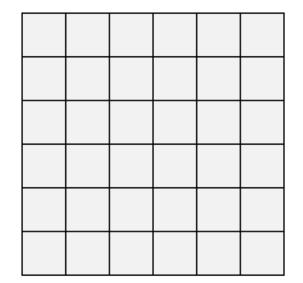
_	filter							
	1 2 1							
	0	0	0					
	-1	-2	-1					

-3	-4	-4	-4	-4	-3
-3	-4	-4	-3	-1	0
0	0	0	0	0	0
2	1	0	1	3	3
2	1	0	1	3	3
1	3	4	3	1	0

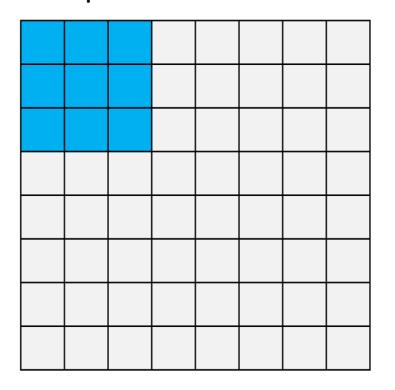
input: $H \times W = 8 \times 8$

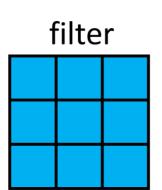


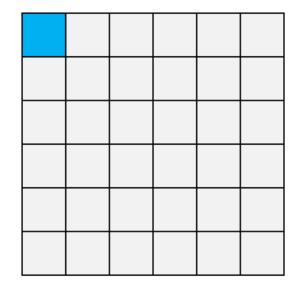




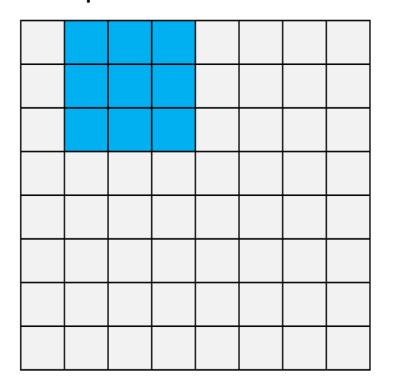
input: $H \times W = 8 \times 8$

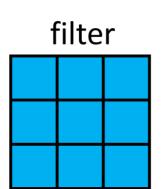


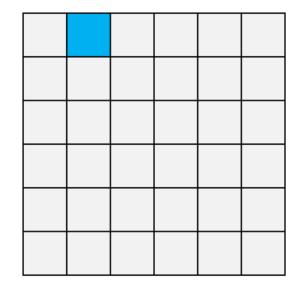




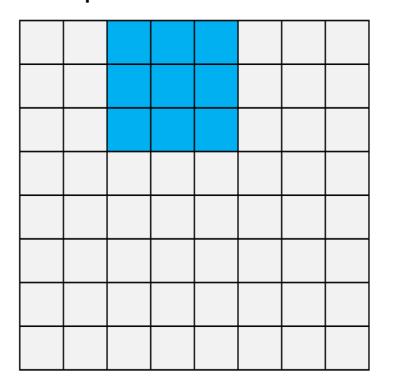
input: $H \times W = 8 \times 8$

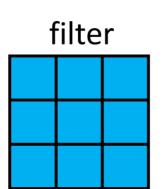


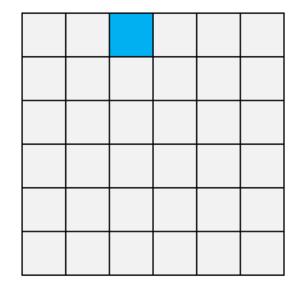




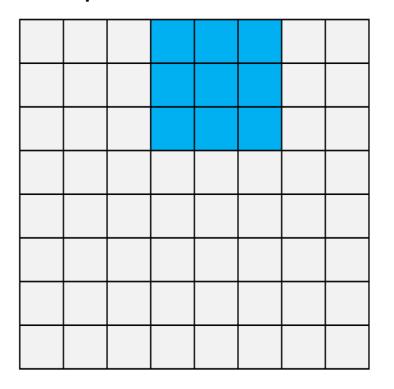
input: $H \times W = 8 \times 8$

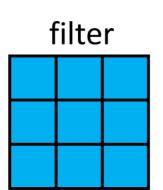


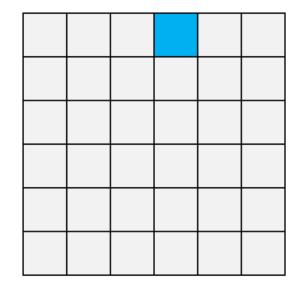




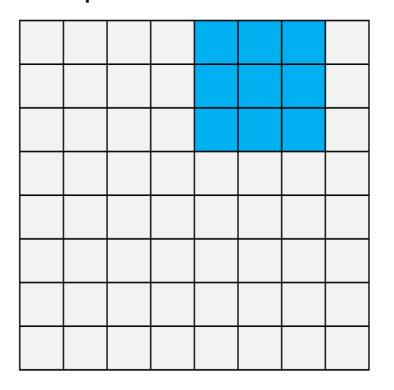
input: $H \times W = 8 \times 8$

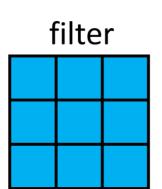


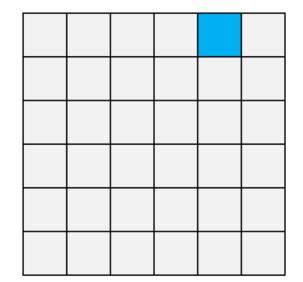




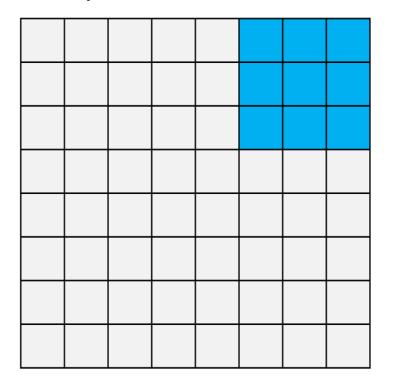
input: $H \times W = 8 \times 8$

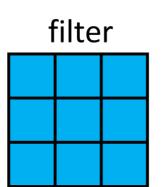


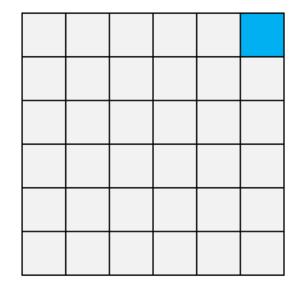




input: $H \times W = 8 \times 8$

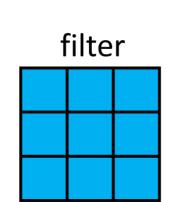




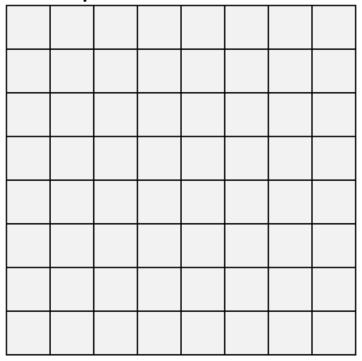


input: 8×8 , + pad

0	0	0	0	0	0	0	0	0	0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0	0	0	0	0	0	0	0	0	0

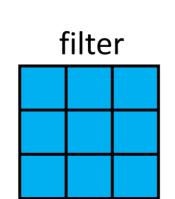


output:
$$H \times W = 8 \times 8$$

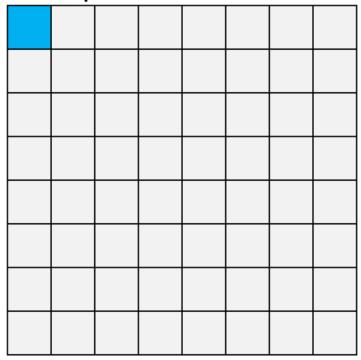


input: 8×8 , + pad

0	0	0	0	0	0	0	0	0	0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0	0	0	0	0	0	0	0	0	0

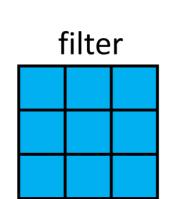


output:
$$H \times W = 8 \times 8$$

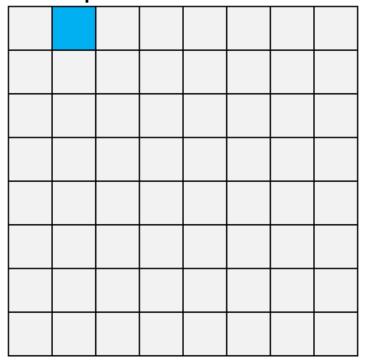


input: 8 × 8, + pad

0	0	0	0	0	0	0	0	0	0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0	0	0	0	0	0	0	0	0	0

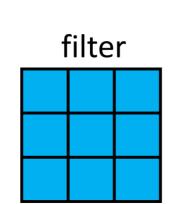


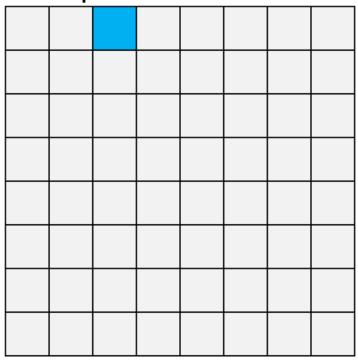
output:
$$H \times W = 8 \times 8$$



input: 8 × 8, + pad

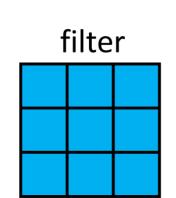
0	0	0	0	0	0	0	0	0	0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0	0	0	0	0	0	0	0	0	0



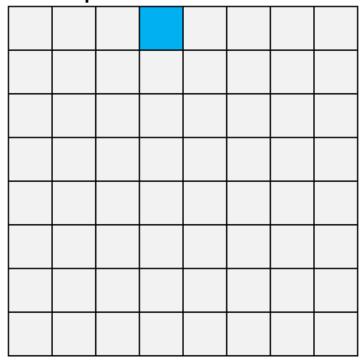


input: 8×8 , + pad

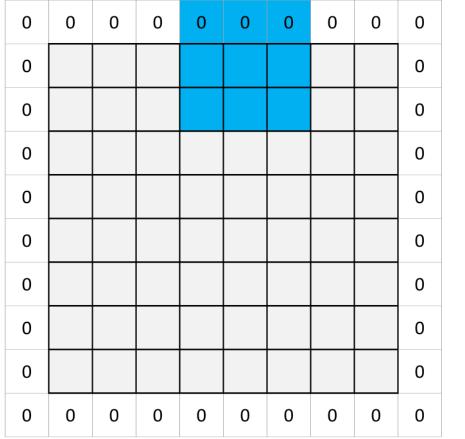
0	0	0	0	0	0	0	0	0	0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0	0	0	0	0	0	0	0	0	0

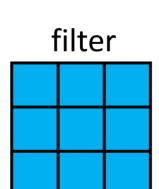


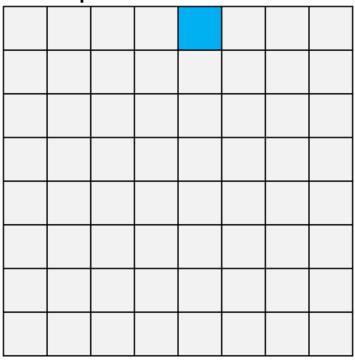
output:
$$H \times W = 8 \times 8$$



input: 8 × 8, + pad

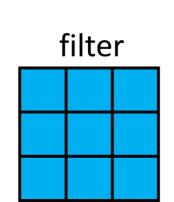




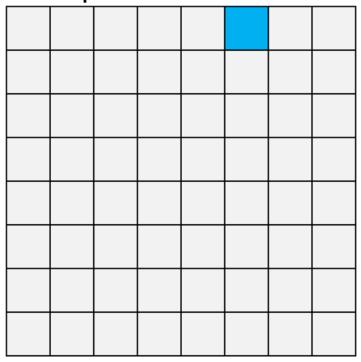


input: 8×8 , + pad

0	0	0	0	0	0	0	0	0	0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0	0	0	0	0	0	0	0	0	0

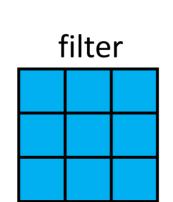


output:
$$H \times W = 8 \times 8$$

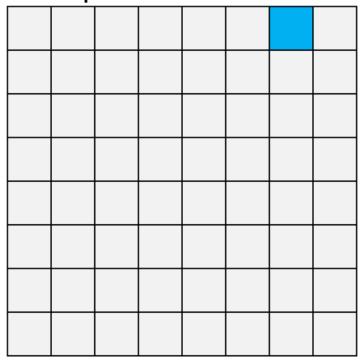


input: 8×8 , + pad

0	0	0	0	0	0	0	0	0	0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0	0	0	0	0	0	0	0	0	0

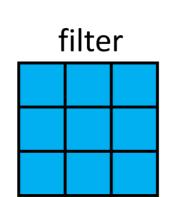


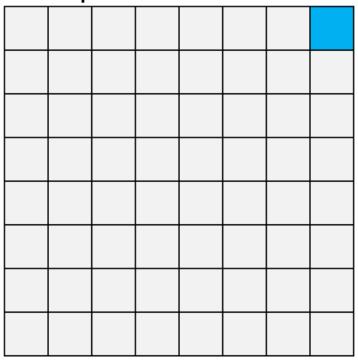
output:
$$H \times W = 8 \times 8$$



input: 8 × 8, + pad

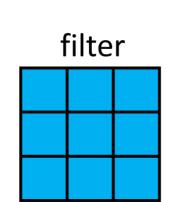
0	0	0	0	0	0	0	0	0	0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0	0	0	0	0	0	0	0	0	0



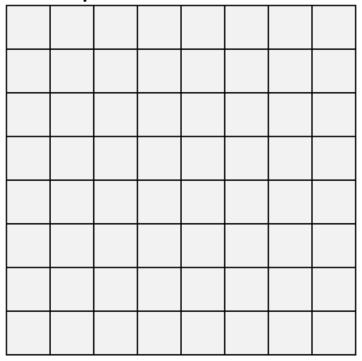


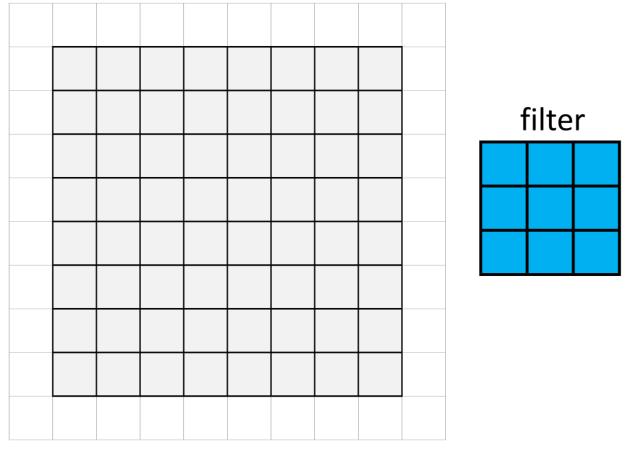
input: 8×8 , + pad

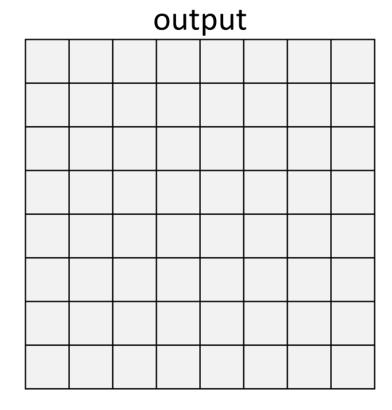
0	0	0	0	0	0	0	0	0	0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0									0
0	0	0	0	0	0	0	0	0	0



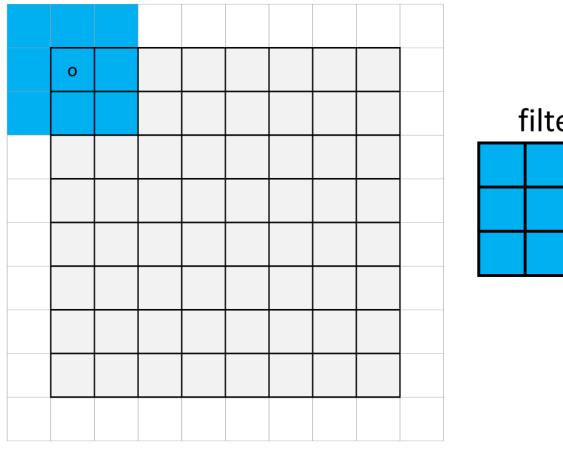
output:
$$H \times W = 8 \times 8$$

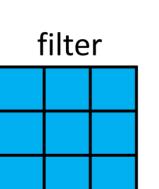


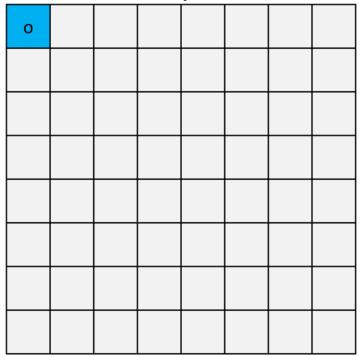




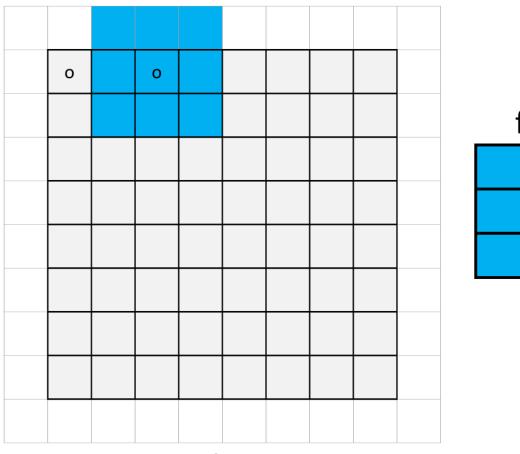
stride = 2

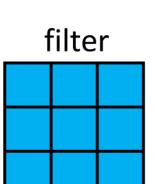


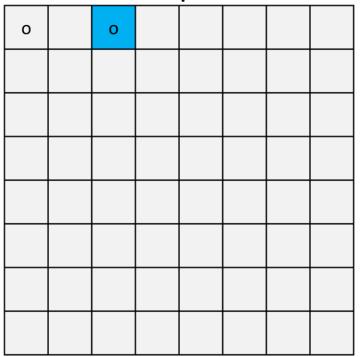




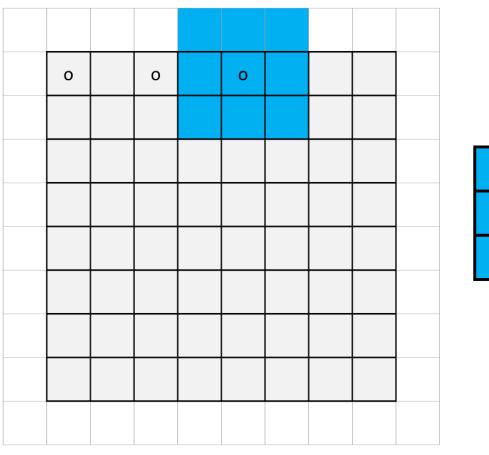
stride = 2

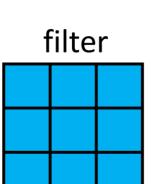


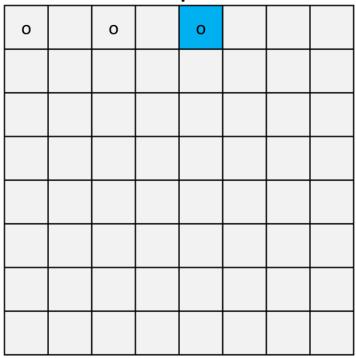




stride = 2

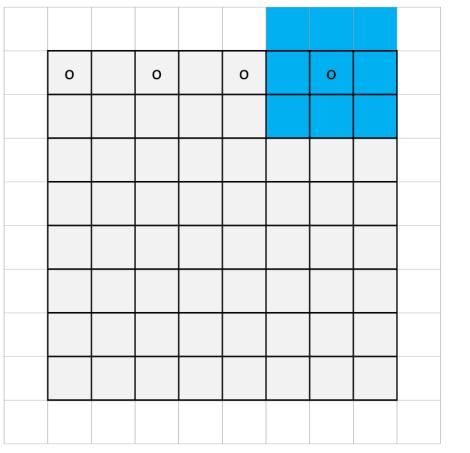


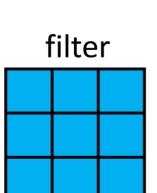


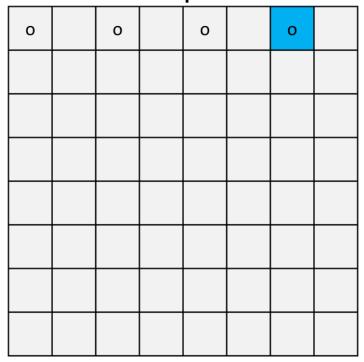


stride = 2

input

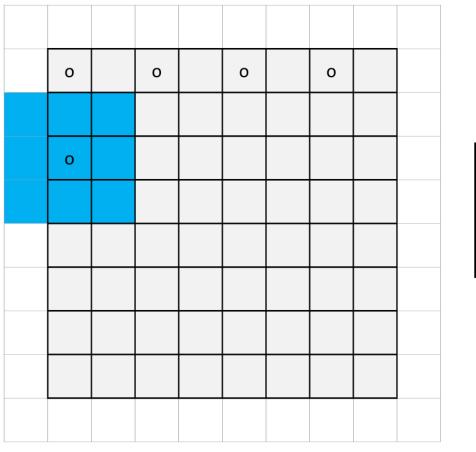


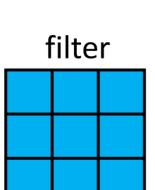


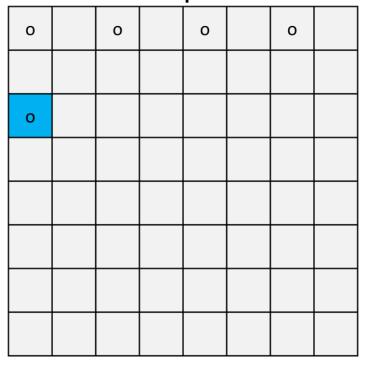


stride = 2

input

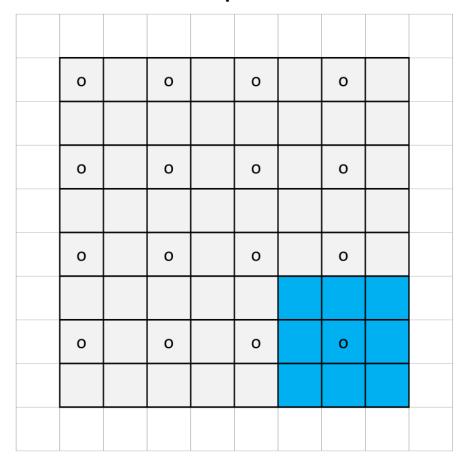


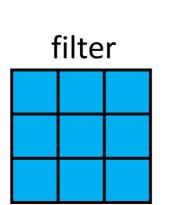




stride = 2

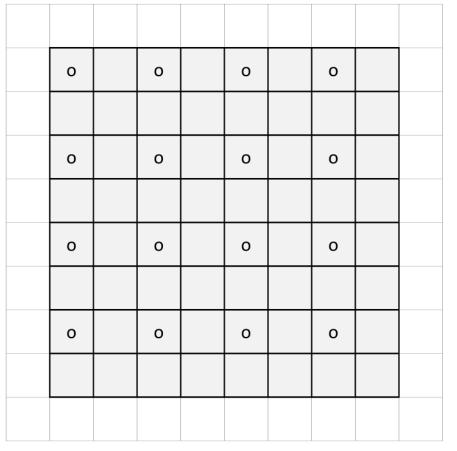
input

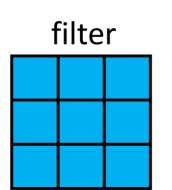




о	0	0	0	
о	0	0	о	
о	0	0	о	
о	0	0	0	

input: $H \times W = 8 \times 8$





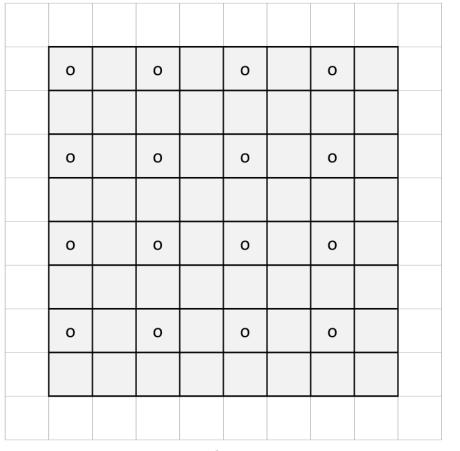
output:
$$H \times W = 4 \times 4$$

ο	0	0	0	
о	о	о	ο	
о	о	о	о	
ο	о	0	0	

stride = 2

filter

input: $H \times W = 8 \times 8$



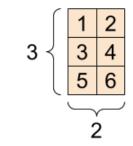
0	0	о	о
ο	о	о	о
о	о	о	о
0	0	0	0

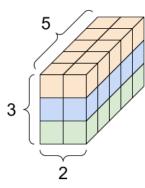
stride = 2

Outline

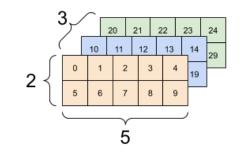
- Recap (fully-connected net)
- Motivation and big picture ideas of CNN
- Convolution operation
 - 1d and 2d convolution mechanics
 - interpretation:
 - local connectivity
 - weight sharing
 - 3d tensors
- Max pooling
 - Larger window
- Typical architecture and summary

A tender intro to tensor:



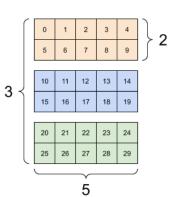


4



2.0 3.0 4.0

3

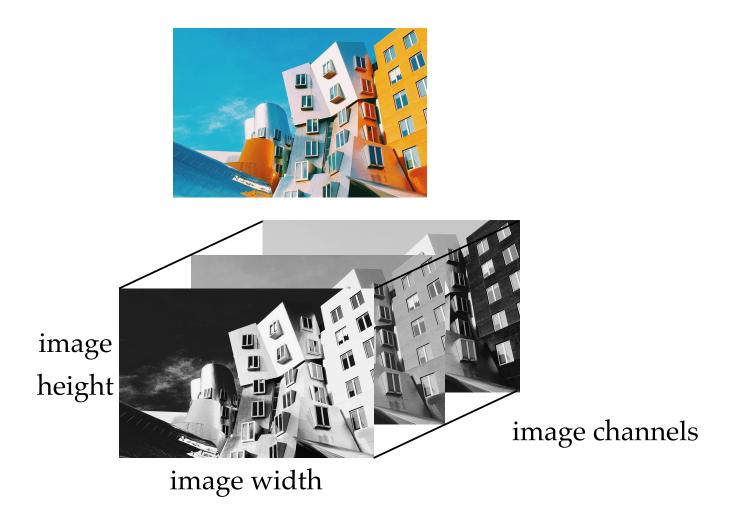


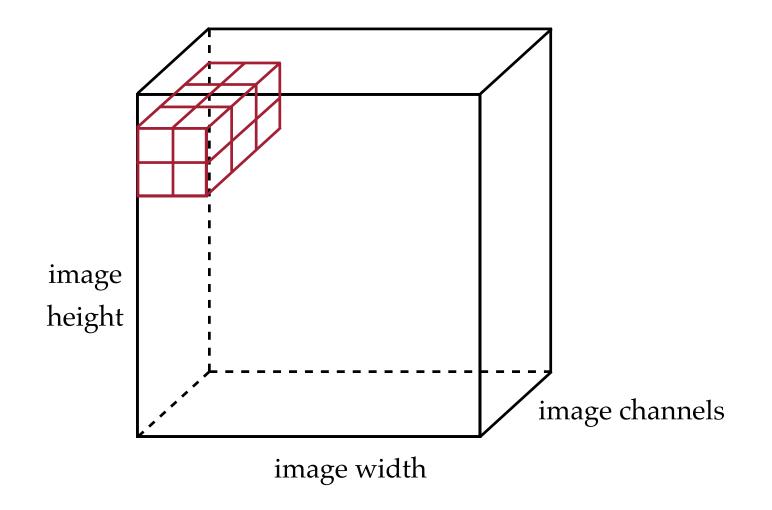
[image credit: tensorflow]

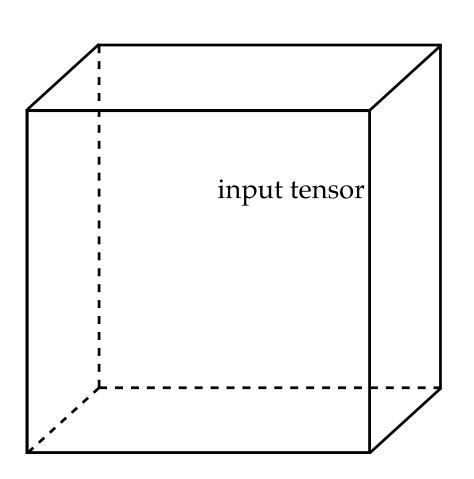
blue

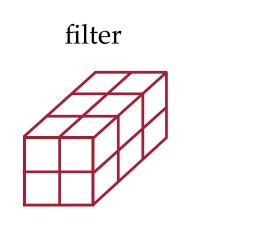
green

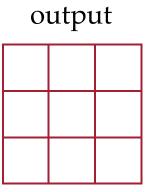
red



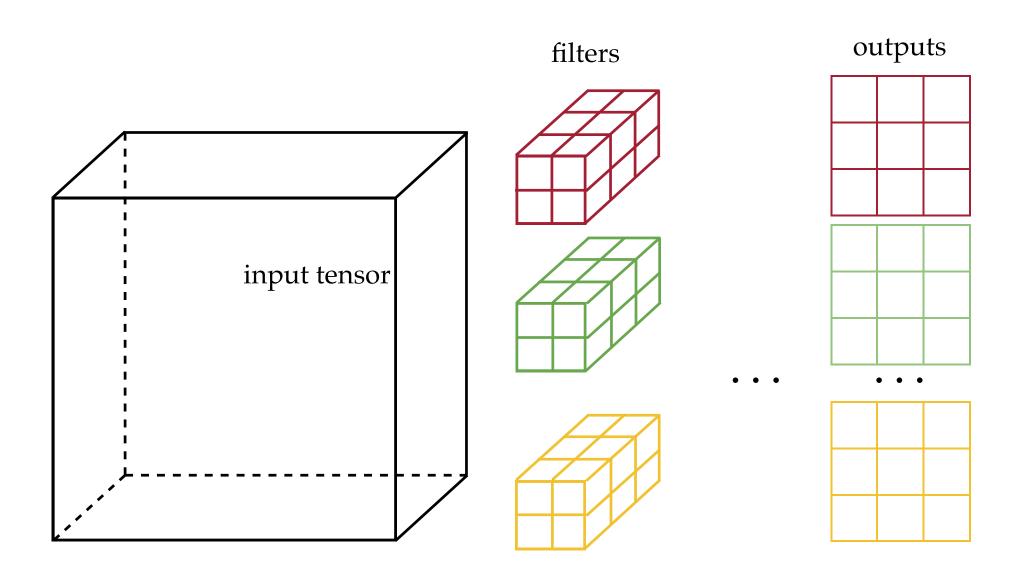


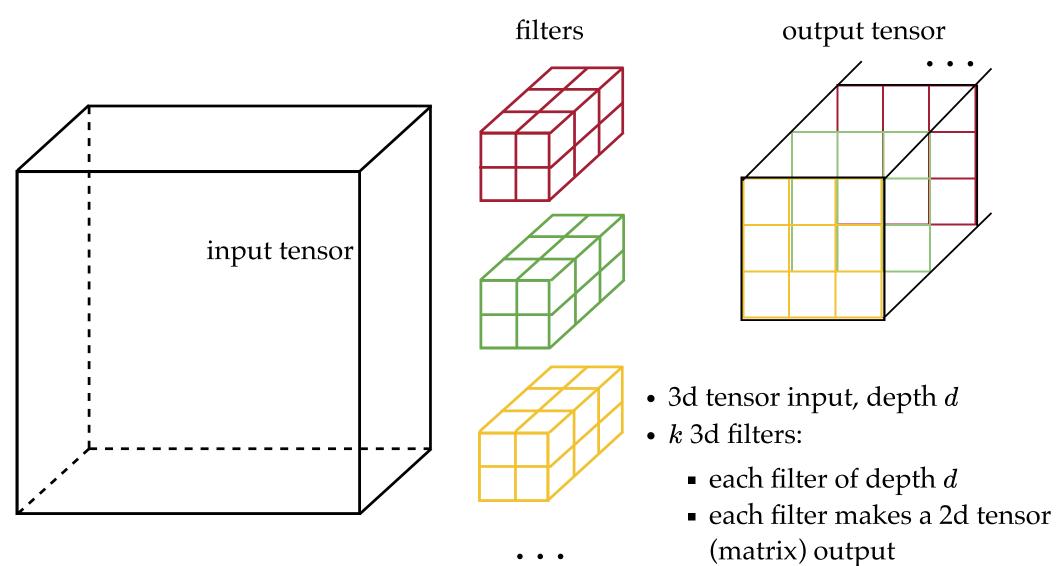




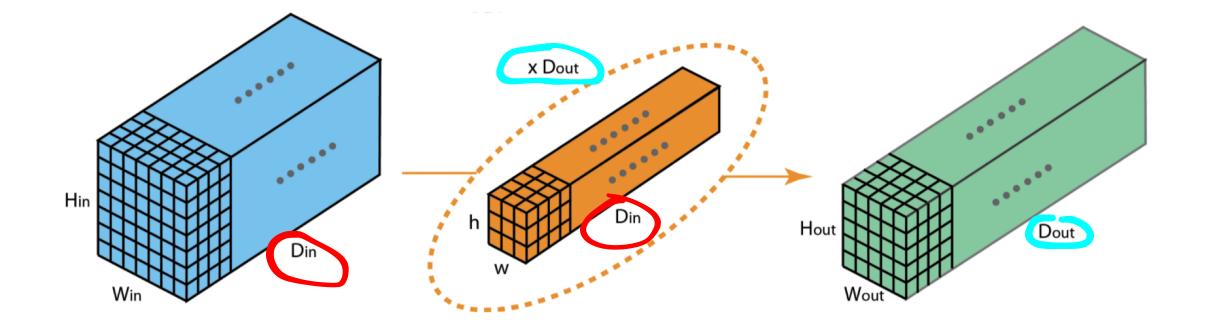


- 3d tensor input, depth *d*
- 3d tensor filter, depth *d*
- 2d tensor (matrix) output





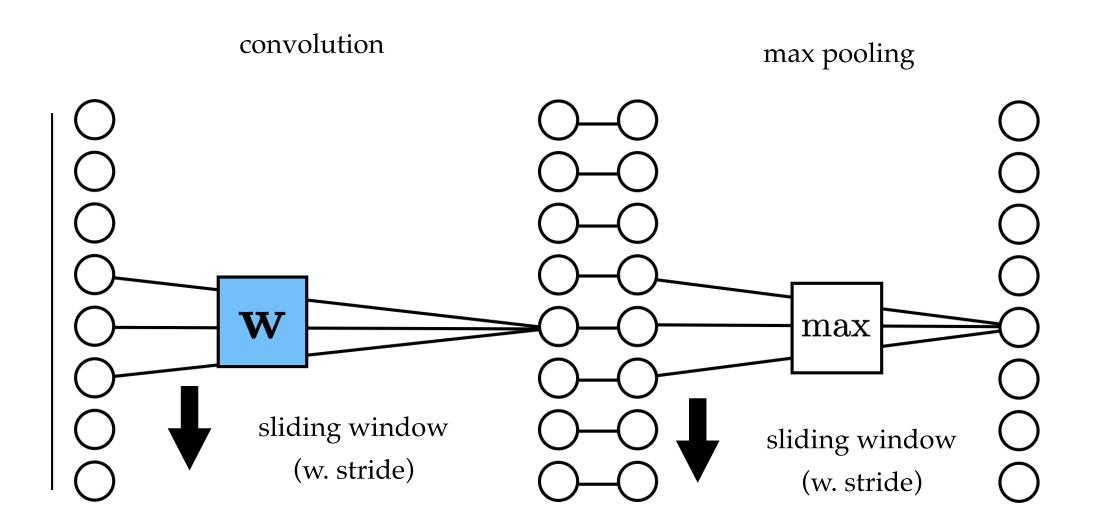
• total output 3d tensor, depth k



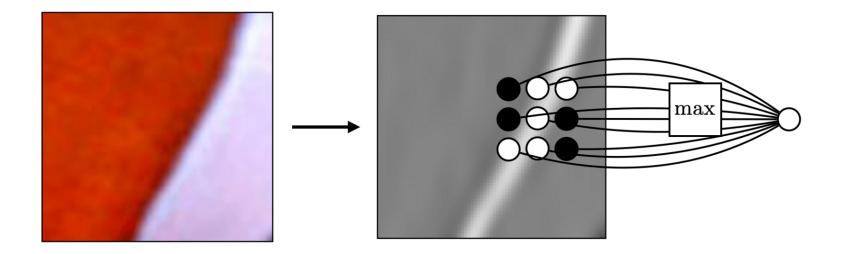
[image credit: medium]

Outline

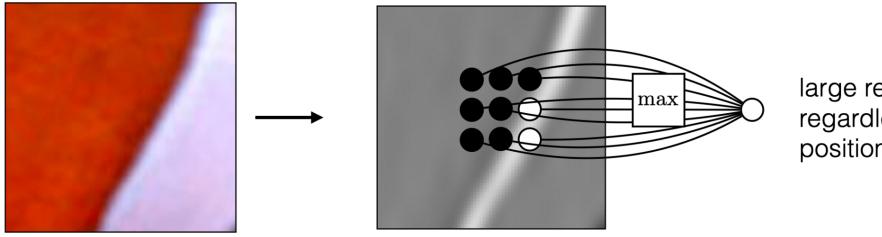
- Recap (fully-connected net)
- Motivation and big picture ideas of CNN
- Convolution operation
 - 1d and 2d convolution mechanics
 - interpretation:
 - local connectivity
 - \circ weight sharing
 - 3d tensors
- Max pooling
 - Larger window
- Typical architecture and summary



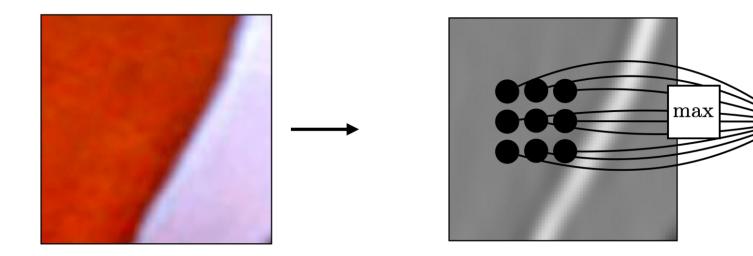
Pooling across spatial locations achieves stability w.r.t. small translations:



Pooling across spatial locations achieves stability w.r.t. small translations:

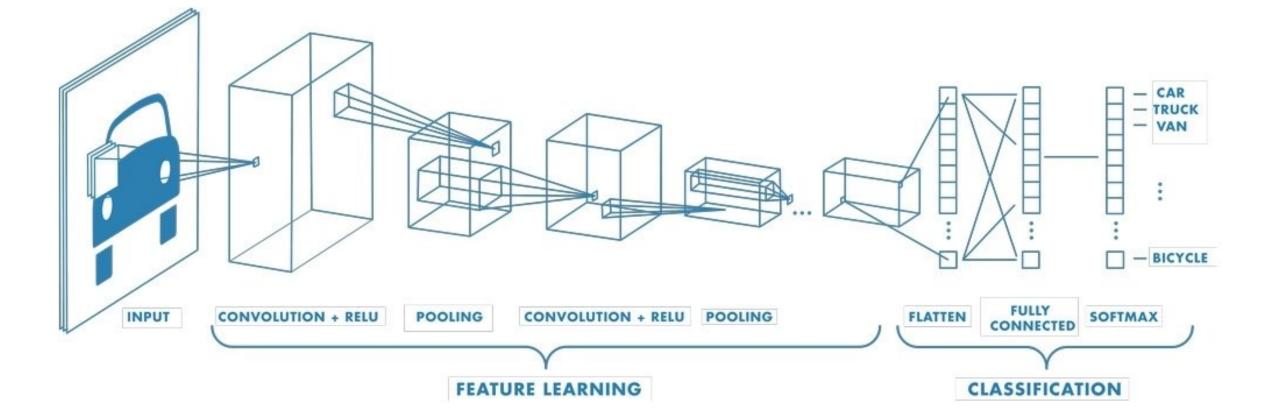


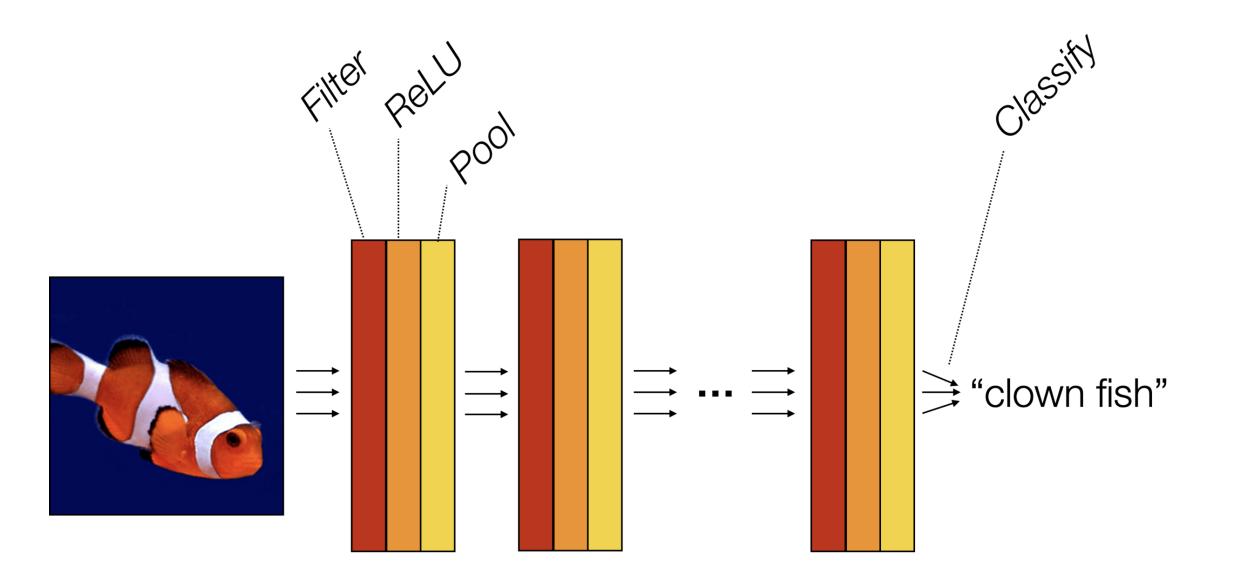
large response regardless of exact position of edge Pooling across spatial locations achieves stability w.r.t. small translations:



Outline

- Recap (fully-connected net)
- Motivation and big picture ideas of CNN
- Convolution operation
 - 1d and 2d convolution mechanics
 - interpretation:
 - local connectivity
 - \circ weight sharing
 - 3d tensors
- Max pooling
 - Larger window
- Typical architecture and summary





We'd love it for you to share some lecture feedback.

Thanks!