

https://introml.mit.edu/

6.390 Intro to Machine Learning

Lecture 2: Linear regression and regularization

Shen Shen Feb 9, 2024

(many slides adapted from Tamara Broderick)

Instructors

Manolis Kellis

Alexandre Megretski

Vince Monardo

Shen Shen

Chris Tanner

Logistical issues? Personal concerns? We'd love to help out at 6.390-personal@mit.edu

Andrew Hutchison

Emily Jiang

Shaunticlair Ruiz

Kevin Bunn

Shaden Alshammari

Claire Lu

Andi Spiride

Lucian Covarrubias

and ~40 awesome LAs

Emily Liu

Elisa Xia

Yogi Sragow

Abhay Basireddy

Logistics

- 11am Section 3 and 4 are completely full and we have many requests to switch. Physical space packed.
- If at all possible, please help us by signup/switch to other slots.
- OHs start this Sunday, please also join our Piazza
- Thanks for all the assignments feedback. We are adapting on-thego but these certainly benefit future semesters.
- Start to get assignments due now. (first up, exercises 2, keep an eye on the "due")

https://shenshen.mit.edu/demos/gifs/atlas_darpa_overall.gi

Optimization + first-principle physics

https://www.youtube.com/embed/fn3KWM1kuAw?enablejsapi=1

Outline

- Recap of last (content) week.
- Ordinary least-square regression
 - Analytical solution (when exists)
 - Cases when analytical solutions don't exist
 - Practically, visually, mathamtically
- Regularization
- Hyperparameter, cross-validation

How do we learn?

- Have data; have hypothesis class
- Want to choose (learn) a good hypothesis *h* (or more concretely, a set of parameters)

How to get it: (Next time!)

$$\mathcal{D}_n \longrightarrow \boxed{\begin{array}{c} \text{learning} \\ \text{algorithm} \end{array}} \longrightarrow h$$

Example: predict pollution level

(Training) data

- *n* training data points
- For data point $i \in \{1, \dots, n\}$ • Feature vector $x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^\top \in \mathbb{R}^d$
 - Label $y^{(i)} \in \mathbb{R}$

What do we want? A good way to label new points

How to label? Hypothesis $h : \mathbb{R}^d \to \mathbb{R}$

 $x \longrightarrow h \longrightarrow y$

• Example *h*: For any *x*, *h*(*x*) = 1,000,000

Is this a **good** hypothesis?

- Hypothesis class \mathcal{H} : set of h
- A linear regression hypothesis when d=1:

$$h(x) = \theta x + \theta_0$$

- Hypothesis class \mathcal{H} : set of h
- A linear regression hypothesis when d=1:

$$h(x) = \theta x + \theta_0$$

- Hypothesis class \mathcal{H} : set of h
- A linear regression hypothesis when d=1: $h(x; \theta, \theta_0) = \theta x + \theta_0$ parameters

- Hypothesis class \mathcal{H} : set of h
- A linear regression hypothesis when d=1: $h(x; \theta, \theta_0) = \theta x + \theta_0$ parameters
- A linear reg. hypothesis when $d \ge 1$: $h(x; \theta, \theta_0) = \theta_1 x_1 + \dots + \theta_d x_d + \theta_0$ $= \theta^\top x + \theta_0$

OR

$$h(x) = \theta_1 x_1 + \dots + \theta_d x_d + (\theta_0)(1)$$

$$= \theta^\top x$$

• A linear reg. hypothesis when $d \ge 1$:

$$h(x; \theta, \theta_0) = \theta_1 x_1 + \dots + \theta_d x_d + \theta_0$$

= $\theta^\top x + \theta_0$
OR
$$h(x; \theta) = \theta_1 x_1 + \dots + \theta_d x_d + (\theta_0)(1)$$

= $\theta^\top x$
Notational
trick: not the
same $\theta \otimes x!$

 Our hypothesis class in linear regression will be the set of all such h

1.3)

Now, here are some executions for different values of k (shown in red is the hypothesis with the lowest MSE, among the k tested).

1.0 -

0.5 -

0.0 -

-0.5

-1.0

-1.5

0.0

0.2

>

(A) k=1

.

0.8

1.0

(B) k=5

- What happens as we increase k? Compare the four "best" linear regressors found by the random regression algorithm with different values of k chosen, which one does your group think is "best of the best"?
- How does it match your initial guess about the best hypothesis?
- Will this method eventually get arbitrarily close to the best solution? What do you think about the efficiency of this method?

(D) k=50

0.4 0.6

×

Outline

- Recap of last (content) week.
- Ordinary least-square regression
 - Analytical solution (when exists)
 - Cases when analytical solutions don't exist
 - Practically, visually, mathemtically
- Regularization
- Hyper-parameter, cross-validation

- How about we just consider all hypotheses in our class and choose the one with lowest training error?
 - We'll see: not typically straightforward
 - But for linear regression with square loss: can do it!

- How about we just consider all hypotheses in our class and choose the one with lowest training error?
 - We'll see: not typically straightforward
 - But for linear regression with square loss: can do it!

• Recall: training error:
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

• Training error: square loss, linear regr., extra "1" feature $\frac{1}{n}\sum_{i=1}^{n}(h(x^{(i)})-y^{(i)})^2$

- How about we just consider all hypotheses in our class and choose the one with lowest training error?
 - We'll see: not typically straightforward
 - But for linear regression with square loss: can do it!

• Recall: training error:
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

• Training error: square loss, linear regr., extra "1" feature $J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} - y^{(i)})^2$

• Training error: square loss, linear regr., extra "1" feature

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} - y^{(i)})^2$$

• Training error: square loss, linear regr., extra "1" feature

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} - y^{(i)})^2 = \frac{1}{n} (\tilde{X}\theta - \tilde{Y})^{\top} (\tilde{X}\theta - \tilde{Y})$$

Linear regression: A Direct Solution • Goal: minimize $J(\theta) = \frac{1}{n} (\tilde{X}\theta - \tilde{Y})^{\top} (\tilde{X}\theta - \tilde{Y})$

- Q: what kind of function is $J(\theta)$
- Q: how does $J(\theta)$ look like?

• A: $J(\theta)$ quadratic function; typically look like a "bowl" (but there're exceptions)

Linear regression: A Direct Solution

• Goal: minimize
$$J(\theta) = \frac{1}{n} (\tilde{X}\theta - \tilde{Y})^{\top} (\tilde{X}\theta - \tilde{Y})$$

- Uniquely minimized at a point if gradient at that point is zero and function "curves up" [see linear algebra]
- Gradient $\nabla_{\theta} J(\theta) \stackrel{\text{set}}{=} 0$

dx1

$$heta^* = \left(ilde{X}^ op ilde{X}
ight)^{-1} ilde{X}^ op ilde{Y}$$

Comments about $\theta^* = \left(\tilde{X}^{\top}\tilde{X}\right)^{-1}\tilde{X}^{\top}\tilde{Y}$

• When θ^* exists, guaranteed to be unique minimizer of

$$J(\theta) = \frac{1}{n} (\tilde{X}\theta - \tilde{Y})^{\top} (\tilde{X}\theta - \tilde{Y})$$

Now, the catch: $\theta^* = \left(\tilde{X}^{\top}\tilde{X}\right)^{-1}\tilde{X}^{\top}\tilde{Y}$ may not be well-defined

•
$$\theta^* = \left(\tilde{X}^{\top}\tilde{X}\right)^{-1}\tilde{X}^{\top}\tilde{Y}$$
 is not well-defined if $\left(\tilde{X}^{\top}\tilde{X}\right)$ is not invertible

- Indeed, it's possible that $\left(\tilde{X}^{ op} \tilde{X} \right)$ is not invertible.
- In particular, $(\tilde{X}^{\top}\tilde{X})$ is not invertible if $\overset{\text{MM}}{\overset{2}{2}}$ and only if *X* is not full column rank

Ax and Ay are linear combinations of columns of A.

$$\begin{bmatrix} 1 & 2\\ 3 & 4\\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 & y_1\\ x_2 & y_2 \end{bmatrix} = A[\mathbf{x} \quad \mathbf{y}] = [A\mathbf{x} \quad A\mathbf{y}]$$

Now, the catch: $\theta^* = \left(\tilde{X}^{\top}\tilde{X}\right)^{-1}\tilde{X}^{\top}\tilde{Y}$ is not well-defined

if \tilde{X} is not full column rank

Recall

indeed X is not full column rank

 $\tilde{X} = \begin{bmatrix} x_1^{(1)} & \cdots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(n)} & \cdots & x_d^{(n)} \end{bmatrix}$ 1. if n < d2. if columns (features) in \tilde{X} have linear dependency

$\tilde{X} = \begin{bmatrix} x_1^{(1)} & \cdots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(n)} & \cdots & x_d^{(n)} \end{bmatrix}$

if *n*<*d* (i.e. not enough data)
 if columns (features) in X have linear dependency (i.e., so-called co-linearity)

$$heta^* = \left(ilde{X}^ op ilde{X}
ight)^{-1} ilde{X}^ op ilde{Y} \qquad ext{ is not defined}$$

- Both cases do happen in practice
- In both cases, loss function is a "half-pipe"
- In both cases, infinitily-many optimal hypotheses
- Side-note: sometimes noise can resolve invertabiliy issue, but undesirable

Outline

- Recap of last (content) week.
- Ordinary least-square regression
 - Analytical solution (when exists)
 - Cases when analytical solutions don't exist
 - Practically, visually, mathemtically
- Regularization
- Hyper-parameter, cross-validation

Regularization

• How to choose among hyperplanes? Preference for θ components being near zero

6-3

Ridge Regression Regularization

• Linear regression with square penalty: ridge regression $J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^n (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2$

Ridge Regression Regularization

• Linear regression with square penalty: ridge regression $J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^n (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2$

Ridge Regression Regularization

- Linear regression with square penalty: ridge regression $J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \qquad (\lambda > 0)$
- Special case: ridge regression with no offset

$$J_{\text{ridge}}(\theta) = \frac{1}{n} (\tilde{X}\theta - \tilde{Y})^{\top} (\tilde{X}\theta - \tilde{Y}) + \lambda \|\theta\|^2$$

• Min at:
$$\nabla_{\theta} J_{\text{ridge}}(\theta) = 0$$

 $\Rightarrow \theta = (\tilde{X}^{\top} \tilde{X} + n \lambda I)^{-1} \tilde{X}^{\top} \tilde{Y}$

- When $\lambda > 0$, always "curves up" & can invert
- Can also solve with an offset

 λ is a hyper-parameter

Outline

- Recap of last (content) week.
- Ordinary least-square regression
 - Analytical solution (when exists)
 - Cases when analytical solutions don't exist
 - Practically, visually, mathemtically
- Regularization
- Hyper-parameter, cross-validation

Cross-validate (\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size)

Cross-validate (\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size) **for** i = 1 to k

Cross-validate (\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size) **for** i = 1 to k

• • •

Cross-validate (\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size) **for** i = 1 to k

Cross-validate(\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size) **for** i = 1 to ktrain h_i on $\mathcal{D}_n \setminus \mathcal{D}_{n,i}$ (i.e. except chunk i)

Cross-validate (\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size) **for** i = 1 to ktrain h_i on $\mathcal{D}_n \setminus \mathcal{D}_{n,i}$ (i.e. except chunk i) compute "test" error $\mathcal{E}(h_i, \mathcal{D}_{n,i})$ of h_i on $\mathcal{D}_{n,i}$

Cross-validate (\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size) **for** i = 1 to ktrain h_i on $\mathcal{D}_n \setminus \mathcal{D}_{n,i}$ (i.e. except chunk i) compute "test" error $\mathcal{E}(h_i, \mathcal{D}_{n,i})$ of h_i on $\mathcal{D}_{n,i}$ **Return** $\frac{1}{k} \sum_{i=1}^k \mathcal{E}(h_i, \mathcal{D}_{n,i})$

Cross-validate (\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size) **for** i = 1 to ktrain h_i on $\mathcal{D}_n \setminus \mathcal{D}_{n,i}$ (i.e. except chunk i) compute "test" error $\mathcal{E}(h_i, \mathcal{D}_{n,i})$ of h_i on $\mathcal{D}_{n,i}$ **Return** $\frac{1}{k} \sum_{i=1}^k \mathcal{E}(h_i, \mathcal{D}_{n,i})$

Comments about cross-validation

- good idea to shuffle data first
- a way to "reuse" data
- not evaluating a hypothesis, but rather
- evaluating learning algorithm. (e.g. hypothesis class, hyperparameter)
- Could e.g. have an outer loop for picking good hyperparameter/class

Summary

- One strategy for finding ML algorithms is to reduce the ML problem to an optimization problem.
- For the ordinary least squares (OLS), we can find the optimizer analytically, using basic calculus! Take the gradient and set it to zero. (Generally need more than gradient info; suffices in OLS)
- Two ways to approach the calculus problem: write out in terms of explicit sums or keep in vector-matrix form. Vector-matrix form is easier to manage as things get complicated (and they will!) There are some good discussions in the lecture notes.

Summary

- What does it mean to well posed.
- When there are many possible solutions, we need to indicate our preference somehow.
- Regularization is a way to construct a new optimization problem
- Least-squares regularization leads to the ridge-regression formulation. Good news: we can still solve it analytically!
- Hyper-parameters and how to pick them. Cross-validation

We'd love it for you to share some lecture feedback.

Thanks!