
CHAPTER 10

Markov Decision Processes

So far, most of the learning problems we have looked at have been supervised, that is, for
each training input x(i), we are told which value y(i) should be the output. From a tradi-
tional machine-learning viewpoint, there’re two other major groups of learning problems:
one is the unsupervised learning problems, in which we are given data and no expected
outputs, and we will look at later in Chapter 12.1 and Chapter 12.2.

The other major type is the so-called Reinforcement learning (RL) problems. Reinforce-
ment learning differs significantly from supervised learning problems, and we will delve
into the details later in in Chapter 11. However, it’s worth pointing out one major dif-
ference at a very high level: in supervised learning, our goal is to learn a one-time static
mapping to make predictions, whereas in RL, the setup requires us to sequentially take
actions to maximize cumulative rewards.

This setup change necessitates additional mathematical and algorithmic tools for us to
understand RL. Markov decision process (MDP) is precisely such a classical and fundamental
tool.

10.1 Definition and value functions

Formally, a Markov decision process is ⟨S,A, T ,R,γ⟩ where S is the state space, A is the
action space, and:

• T : S×A× S→ R is a transition model, where

T(s,a, s ′) = Pr(St = s ′|St−1 = s,At−1 = a) ,

specifying a conditional probability distribution; The notation St = s ′

uses a capital letter S
to stand for a random
variable, and small let-
ter s to stand for a con-
crete value. So St here
is a random variable
that can take on ele-
ments of S as values.

• R : S × A → R is a reward function, where R(s,a) specifies an immediate reward for
taking action a when in state s; and

• γ ∈ [0, 1] is a discount factor, which we’ll discuss in Section 10.1.2.

In this class, we assume the rewards are deterministic functions. Further, in this MDP
chapter, we assume the state space and action space are finite (in fact, typically small).

87

MIT 6.390 Spring 2024 88

The following description of a simple machine as Markov decision process provides
a concrete example of an MDP. The machine has three possible operations (actions):
“wash”, “paint”, and “eject” (each with a corresponding button). Objects are put
into the machine. Each time you push a button, something is done to the object.
However, it’s an old machine, so it’s not very reliable. The machine has a camera
inside that can clearly detect what is going on with the object and will output the
state of the object: “dirty”, “clean”, “painted”, or “ejected”. For each action, this is
what is done to the object:
Wash:

• If you perform the “wash” operation on any object, whether it’s dirty, clean,
or painted, it will end up “clean” with probability 0.9 and “dirty” otherwise.

Paint:

• If you perform the “paint” operation on a clean object, it will become nicely
“painted” with probability 0.8. With probability 0.1, the paint misses but the
object stays clean, and also with probability 0.1, the machine dumps rusty
dust all over the object and it becomes “dirty”.

• If you perform the “paint” operation on a “painted” object, it stays “painted”
with probability 1.0.

• If you perform the “paint” operation on a “dirty” part, it stays “dirty” with
probability 1.0.

Eject:

• If you perform an “eject” operation on any part, the part comes out of the
machine and this fun game is over. The part remains "ejected" regardless of
any further action.

These descriptions specify the transition model T , and the transition function for
each action can be depicted as a state machine diagram. For example, here is the
diagram for “wash”:

dirty clean

painted ejected

0.1

0.9

0.9

0.1

0.1 0.9 1.0

You get reward +10 for ejecting a painted object, reward 0 for ejecting a non-painted
object, reward 0 for any action on an "ejected" object, and reward -3 otherwise. The
MDP description would be completed by also specifying a discount factor.

Last Updated: 05/06/24 18:25:27

MIT 6.390 Spring 2024 89

A policy is a function π : S → A that specifies what action to take in each state. The
policy is what we will want to learn; it is akin to the strategy that a player employs to
win a given game. Below, we take just the initial steps towards this eventual goal. We
describe how to evaluate how good a policy is, first in the finite horizon case (Section 10.1.1)
when the total number of transition steps is finite. Then we consider the infinite horizon
case (Section 10.1.2), when you don’t know when the game will be over.

10.1.1 Finite-horizon value functions

The goal of a policy is to maximize the expected total reward, averaged over the stochastic
transitions that the domain makes. Let’s first consider the case where there is a finite horizon
H, indicating the total number of steps of interaction that the agent will have with the MDP. In the finite-horizon

case, we usually set the
discount factor γ to 1.

We seek to measure the goodness of a policy. We do so by defining for a given MDP

policy π and horizon h, the “horizon h value” of a state, Vh
π (s). We do this by induction on

the horizon, which is the number of steps left to go.
The base case is when there are no steps remaining, in which case, no matter what state

we’re in, the value is 0, so
V0
π(s) = 0 . (10.1)

Then, the value of a policy in state s at horizon h + 1 is equal to the reward it will get in
state s plus the next state’s expected horizon h value, discounted by a factor γ. So, starting
with horizons 1 and 2, and then moving to the general case, we have:

V1
π(s) = R(s,π(s)) + 0 (10.2)

V2
π(s) = R(s,π(s)) + γ

∑

s′
T(s,π(s), s ′)V1

π(s
′) (10.3)

...

Vh
π (s) = R(s,π(s)) + γ

∑

s′
T(s,π(s), s ′)Vh−1

π (s ′) (10.4)

The sum over s ′ is an expectation: it considers all possible next states s ′, and computes
an average of their (h − 1)-horizon values, weighted by the probability that the transition
function from state s with the action chosen by the policy π(s) assigns to arriving in state
s ′, and discounted by γ.

Study Question: What is
∑

s′ T(s,a, s ′) for any particular s and a?

Study Question: Convince yourself that Eqs. 10.1 and 10.3 are special cases of
Eq. 10.4.

Then we can say that a policy π1 is better than policy π2 for horizon h, i.e., π1 >h π2,
if and only if for all s ∈ S, Vh

π1
(s) ⩾ Vh

π2
(s) and there exists at least one s ∈ S such that

Vh
π1
(s) > Vh

π2
(s).

10.1.2 Infinite-horizon value functions

More typically, the actual finite horizon is not known, i.e., when you don’t know when the
game will be over! This is called the infinite horizon version of the problem. How does one
evaluate the goodness of a policy in the infinite horizon case?

If we tried to simply take our definitions above and use them for an infinite horizon,
we could get in trouble. Imagine we get a reward of 1 at each step under one policy and a
reward of 2 at each step under a different policy. Then the reward as the number of steps
grows in each case keeps growing to become infinite in the limit of more and more steps.

Last Updated: 05/06/24 18:25:27

MIT 6.390 Spring 2024 90

Even though it seems intuitive that the second policy should be better, we can’t justify that
by saying ∞ < ∞.

One standard approach to deal with this problem is to consider the discounted infinite
horizon. We will generalize from the finite-horizon case by adding a discount factor.

In the finite-horizon case, we valued a policy based on an expected finite-horizon value:

E

[
h−1∑

t=0

γtRt | π, s0

]
, (10.5)

where Rt is the reward received at time t.

What is E [·]? This mathematical notation indicates an expectation, i.e., an average
taken over all the random possibilities which may occur for the argument. Here,
the expectation is taken over the conditional probability Pr(Rt = r | π, s0), where Rt

is the random variable for the reward, subject to the policy being π and the state
being s0. Since π is a function, this notation is shorthand for conditioning on all of
the random variables implied by policy π and the stochastic transitions of the MDP.

A very important point is that R(s,a) is always deterministic (in this class) for any
given s and a. Here Rt represents the set of all possible R(st,a) at time step t; this Rt

is a random variable because the state we’re in at step t is itself a random variable,
due to prior stochastic state transitions up to but not including at step t and prior
(deterministic) actions dictated by policy π.

Now, for the infinite-horizon case, we select a discount factor 0 < γ < 1, and evaluate a
policy based on its expected infinite horizon discounted value:

E

[∞∑

t=0

γtRt | π, s0

]
= E

[
R0 + γR1 + γ2R2 + . . . | π, s0

]
. (10.6)

Note that the t indices here are not the number of steps to go, but actually the number
of steps forward from the starting state (there is no sensible notion of “steps to go” in the
infinite horizon case).

Eqs. 10.5 and 10.6 are a conceptual stepping stone. Our main objective is to get to
Eq. 10.8, which can also be viewed as including γ in Eq. 10.4, with the appropriate
definition of the infinite-horizon value.

There are two good intuitive motivations for discounting. One is related to economic
theory and the present value of money: you’d generally rather have some money today
than that same amount of money next week (because you could use it now or invest it).
The other is to think of the whole process terminating, with probability 1 − γ on each step
of the interaction. This value is the expected amount of reward the agent would gain under At every step, your ex-

pected future lifetime,
given that you have
survived until now, is
1/(1 − γ).

this terminating model.

Study Question: Verify this fact: if, on every day you wake up, there is a probability
of 1−γ that today will be your last day, then your expected lifetime is 1/(1−γ) days.

Let us now evaluate a policy in terms of the expected discounted infinite-horizon value
that the agent will get in the MDP if it executes that policy. We define the infinite-horizon
value of a state s under policy π as

Vπ(s) = E[R0+γR1+γ2R2+· · · | π,S0 = s] = E[R0+γ(R1+γ(R2+γ . . .))) | π,S0 = s] . (10.7)

Last Updated: 05/06/24 18:25:27

MIT 6.390 Spring 2024 91

Because the expectation of a linear combination of random variables is the linear combina-
tion of the expectations, we have

Vπ(s) = E[R0 | π,S0 = s] + γE[R1 + γ(R2 + γ . . .))) | π,S0 = s]

= R(s,π(s)) + γ
∑

s′
T(s,π(s), s ′)Vπ(s

′) . (10.8)

This is so cool! In a dis-
counted model, if you
find that you survived
this round and landed
in some state s ′, then
you have the same ex-
pected future lifetime as
you did before. So the
value function that is
relevant in that state is
exactly the same one as
in state s.

The equation defined in Eq. 10.8 is known as the Bellman Equation, which breaks down
the value function into the immediate reward and the (discounted) future value function.
You could write down one of these equations for each of the n = |S| states. There are n

unknowns Vπ(s). These are linear equations, and standard software (e.g., using Gaussian
elimination or other linear algebraic methods) will, in most cases, enable us to find the
value of each state under this policy.

10.2 Finding policies for MDPs

Given an MDP, our goal is typically to find a policy that is optimal in the sense that it
gets as much total reward as possible, in expectation over the stochastic transitions that
the domain makes. We build on what we have learned about evaluating the goodness of
a policy (Sections 10.1.1 and 10.1.2), and find optimal policies for the finite horizon case
(Section 10.2.1), then the infinite horizon case (Section 10.2.2).

10.2.1 Finding optimal finite-horizon policies

How can we go about finding an optimal policy for an MDP? We could imagine enumerat-
ing all possible policies and calculating their value functions as in the previous section and
picking the best one – but that’s too much work!

The first observation to make is that, in a finite-horizon problem, the best action to take
depends on the current state, but also on the horizon: imagine that you are in a situation
where you could reach a state with reward 5 in one step or a state with reward 100 in two
steps. If you have at least two steps to go, then you’d move toward the reward 100 state,
but if you only have one step left to go, you should go in the direction that will allow you
to gain 5!

One way to find an optimal policy is to compute an optimal action-value function, Q. For
the finite-horizon case, we define Qh(s,a) to be the expected value of

• starting in state s,

• executing action a, and

• continuing for h− 1 more steps executing an optimal policy for the appropriate hori-
zon on each step.

Similar to our definition of Vh for evaluating a policy, we define the Qh function recur-
sively according to the horizon. The only difference is that, on each step with horizon h,
rather than selecting an action specified by a given policy, we select the value of a that will

Last Updated: 05/06/24 18:25:27

MIT 6.390 Spring 2024 92

maximize the expected Qh value of the next state.

Q0(s,a) = 0 (10.9)

Q1(s,a) = R(s,a) + 0 (10.10)

Q2(s,a) = R(s,a) + γ
∑

s′
T(s,a, s ′)max

a′
Q1(s ′,a ′) (10.11)

...

Qh(s,a) = R(s,a) + γ
∑

s′
T(s,a, s ′)max

a′
Qh−1(s ′,a ′) (10.12)

where (s ′,a ′) denotes the next time-step state/action pair. We can solve for the values of
Qh with a simple recursive algorithm called finite-horizon value iteration that just computes
Qh starting from horizon 0 and working backward to the desired horizon H. Given Qh, an
optimal π∗

h can be found as follows:

π∗
h(s) = arg max

a
Qh(s,a) . (10.13)

which gives the immediate best action(s) to take when there are h steps left; then π∗
h−1(s)

gives the best action(s) when there are (h− 1) steps left, and so on. In the case where there
are multiple best actions, we typically can break ties randomly.

Additionally, it is worth noting that in order for such an optimal policy to be computed,
we assume that the reward function R(s,a) is bounded on the set of all possible (state,
action) pairs. Furthermore, we will assume that the set of all possible actions is finite.

Study Question: The optimal value function is unique, but the optimal policy is not.
Think of a situation in which there is more than one optimal policy.

Last Updated: 05/06/24 18:25:27

MIT 6.390 Spring 2024 93

Dynamic programming (somewhat counter-intuitively, dynamic programming is
neither really “dynamic” nor a type of “programming” as we typically understand
it) is a technique for designing efficient algorithms. Most methods for solving MDPs
or computing value functions rely on dynamic programming to be efficient. The
principle of dynamic programming is to compute and store the solutions to simple
sub-problems that can be re-used later in the computation. It is a very important
tool in our algorithmic toolbox.
Let’s consider what would happen if we tried to compute Q4(s,a) for all (s,a) by
directly using the definition:

• To compute Q4(si,aj) for any one (si,aj), we would need to compute Q3(s,a)
for all (s,a) pairs.

• To compute Q3(si,aj) for any one (si,aj), we’d need to compute Q2(s,a) for
all (s,a) pairs.

• To compute Q2(si,aj) for any one (si,aj), we’d need to compute Q1(s,a) for
all (s,a) pairs.

• Luckily, those are just our R(s,a) values.

So, if we have n states and m actions, this is O((mn)3) work — that seems like
way too much, especially as the horizon increases! But observe that we really only
have mnh values that need to be computed: Qh(s,a) for all h, s,a. If we start with
h = 1, compute and store those values, then using and reusing the Qh−1(s,a) values
to compute the Qh(s,a) values, we can do all this computation in time O(mn2h),
which is much better!

10.2.2 Finding optimal infinite-horizon policies

In contrast to the finite-horizon case, the best way of behaving in an infinite-horizon dis-
counted MDP is not time-dependent. That is, the decisions you make at time t = 0 looking
forward to infinity, will be the same decisions that you make at time t = T for any positive
T , also looking forward to infinity.

An important theorem about MDPs is: in the infinite-horizon case, there exists a station-
ary optimal policy π∗ (there may be more than one) such that for all s ∈ S and all other Stationary means that

it doesn’t change over
time; in contrast, the
optimal policy in a
finite-horizon MDP is
non-stationary.

policies π, we have
Vπ∗(s) ⩾ Vπ(s) . (10.14)

There are many methods for finding an optimal policy for an MDP. We have already
seen the finite-horizon value iteration case. Here we will study a very popular and useful
method for the infinite-horizon case, infinite-horizon value iteration. It is also important to
us, because it is the basis of many reinforcement-learning methods.

We will again assume that the reward function R(s,a) is bounded on the set of all pos-
sible (state, action) pairs and additionally that the number of actions in the action space
is finite. Define Q(s,a) to be the expected infinite-horizon discounted value of being in
state s, executing action a, and executing an optimal policy π∗ thereafter. Using similar
reasoning to the recursive definition of Vπ, we can express this value recursively as

Q(s,a) = R(s,a) + γ
∑

s′
T(s,a, s ′)max

a′
Q(s ′,a ′) . (10.15)

This is also a set of equations, one for each (s,a) pair. This time, though, they are not
linear (due to the max operation), and so they are not easy to solve. But there is a theorem

Last Updated: 05/06/24 18:25:27

MIT 6.390 Spring 2024 94

that says they have a unique solution!
Once we know the optimal action-value function, then we can extract an optimal policy

π∗ as
π∗(s) = arg max

a
Q(s,a) . (10.16)

As in the finite-horizon
case, there may be more
than one optimal policy
in the infinite-horizon
case.

We can iteratively solve for the Q∗ values with the infinite-horizon value iteration algo-
rithm, shown below:

INFINITE-HORIZON-VALUE-ITERATION(S,A, T ,R,γ, ϵ)

1 for s ∈ S,a ∈ A :

2 Qold(s,a) = 0
3 while not converged:
4 for s ∈ S,a ∈ A :

5 Qnew(s,a) = R(s,a) + γ
∑

s′ T(s,a, s ′)maxa′ Qold(s
′,a ′)

6 if maxs,a|Qold(s,a) −Qnew(s,a)| < ϵ :

7 return Qnew

8 Qold = Qnew

Theory There are a lot of nice theoretical results about infinite-horizon value iteration.
For some given (not necessarily optimal) Q function, define πQ(s) = arg maxa Q(s,a).

• After executing infinite-horizon value iteration with convergence hyper-parameter ϵ,
Note the new nota-
tion! Given two func-
tions f and f ′, we write
∥f − f ′∥max to mean
maxx|f(x) − f ′(x)|. It
measures the maximum
absolute disagreement
between the two func-
tions at any input x.

∥VπQnew
− Vπ∗∥max < ϵ . (10.17)

• There is a value of ϵ such that

∥Qold −Qnew∥max < ϵ =⇒ πQnew = π∗ (10.18)

• As the algorithm executes, ∥VπQnew
− Vπ∗∥max decreases monotonically on each itera-

tion.

• The algorithm can be executed asynchronously, in parallel: as long as all (s,a) pairs
are updated infinitely often in an infinite run, it still converges to the optimal value. This is very important

for reinforcement learn-
ing.

Last Updated: 05/06/24 18:25:27

