
6.390: Midterm Exam, Fall 2024

Solutions

• This is a closed book exam. One page (8 1/2 in. by 11 in.) of notes, front and back, are
permitted. Calculators are not permitted.

• The total exam time is 2 hours.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you have a question, raise your hand or come to the front of the room.

• Write your name on every piece of paper.

Name: MIT Email:

Question Points Score

1 24

2 12

3 14

4 12

5 20

6 18

Total: 100

1



Name:

Classification

1. (24 points) Recall that a linear logistic classifier is characterized by

h(x; θ, θ0) = σ(θTx+ θ0),

where σ(·) is the standard sigmoid function, σ(z) = 1/(1 + exp(−z)). Define the argument of
the sigmoid function in h(·) to be z = θTx+ θ0.

(a) i. On the graph below, draw the linear separator defined by the parameters θ = [−2,−2]T ,
θ0 = 2. Be sure to include a direction normal pointing in the direction of the positive
class.

Solution:
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ii. Would the corresponding linear logistic classifier assign the indicated point at (x1, x2) =
(0.0, 1.5) as positive or negative?

Solution: The indicated point is classified as negative.

iii. What value of z does the classifier assign to the indicated point? (Your answer should
be a specific number.)

Solution: z = −2 ∗ 0− 2 ∗ 1.5 + 2 = −1

iv. What is the numerical probability output by the classifier? (You can leave a mathe-
matical expression involving e, but your solution must not have matrix operations left
to be done.)

Solution: σ(z) = 1
1+e−z = 1

1+e
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(b) The following plot represents a two-dimensional space into which five separating hyper-
planes for classifiers have been drawn, each with an associated normal vector intended to
point toward the positive examples.
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For each of the hypotheses parameterized by the values of the values of (θ, θ0) below,
identify the matching hyperplane from the plot above.

i. θ =

[
2
2

]
, θ0 = −2

Solution: The correct answer is B. Conflict: C

ii. θ =

[
2
2

]
, θ0 = −6

Solution: The correct answer is D.

iii. θ =

[
2
4

]
, θ0 = −8

Solution: The correct answer is A. Conflict: E

Page 3



Name:

(c) The plot below is the same as from the previous part, but, now with some “held-out” data
points that were not used in training the models. Each data point is labeled as positive
(+) or negative (−).
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Imagine the linear logistic classifier model with parameter |θ1| = 1 that corresponds to
each of the drawn, oriented separating hyperplanes.

i. What is the accuracy of each of the models (A–E) on the set of held out data indicated?

Solution:

Model Accuracy
A 100%
B 75%
C 100%
D 75%
E 50%

ii. Now using a NLL measure of Loss, which model has the minimum loss on the held
out data? Justify your response. Hint: you do not need to explicitly compute the
NLL value.

Solution: Both models A and C classify the correctly and would be expected to
have lower loss than models that misclassify some of the data. We are also told
that the parameters are on the same scale for all the models, and so we expect
distance from the separating hyperplane to have a roughly similar contribution to
each model’s NLL Loss. Comparing model A and model C, two of the data points
are quite close to the separating line for model C and are expected to contribute
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some significant loss. Whereas for model A, all of the points are relatively far.
Thus, among the given models, model A is expected to have the minimum NLL
loss on the held out data.
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(d) Now, we would like to analyze a multiclass linear logistic classifier with K = 3 classes.
For this part of the problem, we are still working with only 2 input features (x1, x2), but
we choose to fold θ0 into the θ matrix by adding a row to the bottom of the θ matrix
representing the θ0’s and we add a 1 to the end of each x column vector. So, in this
framing, let x be a data point, x = [x1, x2, 1]

T . Our θ will be a 3 × 3 matrix and let
z = θTx be a 3 × 1 vector with z = [z1, z2, z3]

T . Then, the output of the model will be
defined as,

g = softmax(z) =

exp(z1)/∑3
i=1 exp(zi)

exp(z2)/
∑3

i=1 exp(zi)

exp(z3)/
∑3

i=1 exp(zi)

 .

Recall that the vector g represents the likelihood assigned to each of the three classes, and
the class prediction is the made from the largest element of g.

i. Suppose that we have a model defined by the following matrix:

θ =

1 0 0
0 1 1
0 0 1

 .

Consider the data point x = [1,−1, 1]T . Compute z = θTx and determine which class
will be assigned to x.

Solution: z = [1,−1, 0]T ; therefore, x will be assigned to class 1.
Conflict: z = [−1, 1, 0]T ; therefore, x will be assigned to class 2.

Page 6



Name:

ii. Examine the classification problem represented by the graph below, where points are
labelled with their class: 1, 2, or 3. Also given below is a model represented by the
matrix θ (note that this is θ and so the first column represents θ1, θ2, and θ0 for class
1).
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x1 = −3

θ =

 −1 0 1
0 0 0
−3 0 0



Does the provided model defined by θ perfectly separate the data as desired in the
graph above? If yes, show your reasoning. If no, identify all data points in the graph
above that are misclassified.

Solution: Yes; we have that z = [−x1 − 3, 0, x1]
T . This implies that we will get

a label of class 1 when x1 ≤ −3, class 2 when x1 > −3 and x1 ≤ 0, class 3 when
x1 > 0.
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iii. Examine the classification problem represented by the graph below, where points are
labelled with their class: 1, 2, or 3. Also given below is a model represented by the
matrix θ (note that this is θ and so the first column represents θ1, θ2, and θ0 for class
1).
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

Does the provided model defined by θ perfectly separate the data as desired in the
graph above? If yes, show your reasoning. If no, identify all data points in the graph
above that are misclassified.

Solution: No; we have that z = [−x2, x1,−x1]
T . This implies that we will get a

label of class 1 when x2 ≤ 0 and |x1| < −x2, class 2 when x1 ≥ 0 and x1 > −x2,
class 3 either when x1 < 0 and x2 > 0 or when x2 < 0 and x1 < x2. The
misclassified regions are indicated in the figure below.
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Feathery Featurizations

2. (12 points) In a popular bird-themed board game, players collect bird cards, each representing
a different species. Each card has several attributes relevant to the game mechanics, such as
the bird’s wingspan, the type of nest it builds, the maximum number of eggs it can hold, and
the food required to play the card. To use these bird cards in a machine learning model, these
attributes need to be transformed into numerical features that the model can interpret.

In this problem, you will determine how to encode the features of these birds and encode
specific examples. Describe how you would encode each of the features below for use in a
machine learning model and the dimensions of the encoded feature. Consider different types of
encoding (e.g., binary, one-hot encoding, thermometer, normalization, etc.) and explain your
reasoning for each feature.

(a) Nest Type: Birds can build different types of nests (bowl, cavity, platform, or ground).
A bird can only have one of these types of nests or a “wildcard” nest, meaning that their
nest counts for any and all types of nests.

Write the encoding of: (1) a bird that builds a bowl nest and (2) a bird that builds a
wildcard nest.

Solution: A binary length 4 encoding where [1, 0, 0, 0] (bowl) and [1, 1, 1, 1] (wild).

(b) Habitat: Each bird can live in one or more of three habitats: forest, grassland, or wetland.

Write the encoding of: a bird that can live in the forest or grasslands.

Solution: Binary encoding per habitat. Bird that can live in forest or grasslands but
not wetland would be [1, 1, 0].

(c) Wingspan: A continuous feature representing the bird’s wingspan (in centimeters). The
minimum wingspan is 0 cm and maximum is roughly 300 cm.

Write the encoding of: a bird with a wingspan of 50cm.

Solution: Normalized real positive number.

Page 9



Name:

(d) Egg Limit: Each bird card specifies how many eggs the bird can hold, represented as an
integer. The minimum number of eggs is zero and maximum number of eggs is eight.

Write the encoding of: a bird that can hold 4 eggs.

Solution: Thermometer encoding of size 8, i.e. [1, 1, 1, 1, 0, 0, 0, 0] for 4 egg capacity
encodes the fact that the number of eggs is discrete and the similarity of 4 egg capacity
vs. 5 egg capacity.

We gave partial credit for real numbers (standardized and not) because this is an
encoding that likely lead to an okay model, but it does allow for invalid encodings
(encoding birds that are not in-distribution for the game).

(e) Food Cost: Each bird requires a specific combination of food to play the card. There are 5
types of food (e.g., Invertebrate, Seed, Fruit, Fish, Rodents) and birds cost no more than
three food. Example to encode: A bird that costs 2 Fruit and 1 Seed to play.

Solution: There are multiple answers that are reasonable here.

• Integer encoding per food item, e.g. [0, 1, 2, 0, 0] or could divide by three to
standardize between 0 and 1, e.g. [0, 1/3, 2/3, 0, 0].

• Thermometer encoding for each category (5 food types) × (3 max number of
food items).

[[0, 0, 0],

[1, 0, 0],

[1, 1, 0],

[0, 0, 0],

[0, 0, 0]]

• (Partial Credit) One-hot encoding for each food slot (5 food types) × (3 max
number of food items). Note, that this encoding is ambiguous – you need to not
only order the food categories, but also the order in which the food is ordered
in the slots. For example, 2 Fruit and 1 Seed could be encoded

[[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0],

[0, 0, 1, 0, 0]]

or

[[0, 0, 1, 0, 0],

[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0]]

or
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[[0, 0, 1, 0, 0],

[0, 0, 1, 0, 0],

[0, 1, 0, 0, 0]]

and this ambiguity makes it an unfavorable encoding. However, one could use
the convention that food is ordered in the three slots e.g. first list Invertebrate,
then Seed, then Fruit, then Fish, and then Rodents, but it must be specified.
Furthermore, the ordering does not easily show a relationship between needing
1 vs. 2 of a food.

• (Partial Credit) One-hot encoding of the number in each category. Similar to
above, this does not show any relationship between 0, 1, 2, and 3 of that food
type, so we gave partial credit.

• (Partial Credit) One-hot encoding of all possible combinations, six food options
and three max food slots (6 choose 3 = 20). Encoding does not show relationships
between different food costs, so partial credit.

(f) Points: Each bird card is worth a certain number of points, which is an integer value (a
minimum of 0 and maximum of 10).

Write the encoding of: a bird worth 7 points.

Solution: Thermometer encoding of size 10: [1, 1, 1, 1, 1, 1, 1, 0, 0, 0]. Standardized
real positive value also received full credit. Could normalize 10 to be 1, so a bird worth
7 would be 0.7.
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Random Descent

3. (14 points) Your friend Jordan is interested in learning algorithms for producing linear regres-
sion models. However, they have resolved to not compute any gradients. Instead, they decide
to come up with their own iterative learning algorithm, Random Descent. At every iteration,
we randomly decide to increase or decrease the parameter values by the learning rate. If this
change results in a lower mean-squared error (MSE), the update is accepted; otherwise, the
parameters remain unchanged. Pseudo-code for learning two parameters, a, b, with Random
Descent is as follows:

def random_descent(a, b, X, Y, ...

max_iter, learning_rate, decay=1):

# Compute initial error

error = MSE(a, b, X, Y)

# Iterative loop for random descent

for iter in range(max_iter):

# Propose new values for a and b

a_new = a + coin_flip([-1, 1]) * learning_rate

b_new = b + coin_flip([-1, 1]) * learning_rate

# Compute new error

new_error = MSE(a_new, b_new, X, Y)

# Accept new parameters if error decreases

if new_error < error:

a = a_new

b = b_new

error = new_error

learning_rate = learning_rate*decay

# Return final learned parameters

return a, b

Here, coin flip is used to randomly pick whether to increase or decrease the parameter value
with equal probability. Suppose that Jordan has some data set D = {(x(i), y(i))}100i=1 where each
x(i) ∈ R2 is a 2-dimensional feature vector and y(i) ∈ R is its corresponding label. Each column
of X is a feature vector, and each “column” of Y is the corresponding target output value. The
error is then computed to be

MSE =
1

n

n∑
i=1

(
y(i) − h(x(i); {a, b})

)2
.
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(a) In Jordan’s first data set, the feature vectors take the form x(i) = [x
(i)
1 , 1]T . Their hypothe-

ses take the form h1(x; {a, b}) = ax1 + b. Jordan runs three different instances of Random
Descent, each initialized with a=-1, b=1, max iter=1000, decay=1, and using learning
rates 0.1, 0.2, and 0.5. However, they lost track of which rate corresponds to which of the
three instances.

In each panel below is a contour plot showing lines of constant error, visualizing the
trajectory of one instance of minimizing the MSE with random descent:
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Match each of the three plots with the learning rate that was used to generate it. Each
choice of learning rate was used exactly once.

Solution: Plot 0: 0.5, Plot 1: 0.1, Plot 2: 0.2

(b) Consider the left-most plot in Part (a). What are the learned parameter values for a, b?
Round a, b to the closest integer.

Solution: a = 2, b = 3
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(c) In Jordan’s second data set the feature vectors take the form x(i) = [x
(i)
1 , x

(i)
2 ]T . Their

hypotheses take the form h2(x; {a, b}) = ax1+bx2. Jordan runs three instances of Random
Descent, each initialized with a=3, b=0, max iter=1000, decay=1, but with different
learning rates. Three contour plots showing lines of constant error are shown below,
corresponding to these three runs, with the learning rate as indicated in the title:
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An oracle approaches, who claims to be omniscient. She tells Jordan that the best hy-
pothesis takes the form h(x) = 4x1 + 3x2.

Does this claim have any merit? Should we trust this oracle? Mark all that are true and
explain your reasoning.

Solution:

⃝ The results of our experiments are enough to disprove the
oracle’s claim. Random Descent learned the uniquely best
model.

√
Based on the contour plots, parameter values of
a = 4, b = 3 would correspond to a hypothesis which
minimizes the MSE.

⃝ Given more iterations, every instance of Random Descent
ran on this data set would eventually converge to a = 4, b =
3.

⃝ We need access to a larger training data set so that we can
be more confident in our learned parameter values.

√
We need to evaluate the hypotheses on a held-out
data set.

From the contour plot, we can see that the features are linearly dependent; more
training data will not fix this issue. This is because the contour plot demonstrates
that our objective function has a “half-pipe” shape, and there will be infinitely many
points which minimize the MSE, including (4,3) and (1,6). The half-pipe is a convex
shape; there is no concern for local optima. In any case, the only way to determine
which model performs best is to analyze its performance on unseen data.
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(d) Jordan would like to start using a decay with the learning rate such that progressively
smaller steps will be taken at each iteration. They would like to utilize 4-fold cross
validation in order to find a decay value that produces hypotheses that generalize to
held-out validation data.

Fill in the blanks in the pseudocode below to implement 4-fold cross validation.

1. decays = [0.8,0.9,0.99,0.999]

2. for i = 1 to 4:

3. Divide X,Y into _________________________

4. for j = 1 to 4:

5. a[j],b[j] = random_descent(0,0,_______,______,1000,0.3,__________)

6. error[j] = ______________

7. avg_error[i] = ________________

8. best_decay = _____

Solution:

1. decays = [0.8,0.9,0.99,0.99]

2. for i = 1 to 4:

3. Divide X,Y randomly into four equal subsets,

(Xi,Yi) i = 1, ..., 4

4. for j = 1 to 4:

5. a[j],b[j] = random_descent(0,0,X without Xj,Y without Yj,

1000,0.3,decays[i])

6. error[j] = MSE(a[j],b[j],Xj,Yj)

7. avg_error[i] = sum(error)/4

8. best_decay = decays[argmin(avg_error)]

We’re very generous with how “pseudo” the filled-in code may be. It was critical to
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identify the key components of K-fold cross validation: splitting the data set in K
equally sized folds, ideally selected at random. We train a model on K − 1 folds and
test on the held-out fold.
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Logistic Mysteries

4. (12 points) The standard stochastic gradient descent algorithm is defined as

Θ(t) = Θ(t−1) − η(t)∇Θfi(t)(Θ
(t−1)) (t = 1, 2, 3, . . . ).

Here, Θ(t) = [θ(t), θ
(t)
0 ]T ∈ R2 are two-dimensional vectors. Our objective is the negative log-

likelihood function,

fk(Θ) = Lnll(h(x
(k),Θ), y(k)), h

(
x,

[
θ
θ0

])
= σ(θx+ θ0).

σ(·) is the standard sigmoid function. At each iteration t, i(t), is an integer selected randomly
from {1, 2, . . . , n}. A variable learning rate η(t) > 0 is used.

Stochastic gradient descent was applied to minimize (with respect to Θ) the (non-regularized)
logistic regression objective function

J(Θ) =

n∑
k=1

fk(Θ)

for the training dataset {(x(j), y(j))}nj=1 containing n training samples (x(j), y(j)) where x(j) ∈ R

are input samples, and y(j) ∈ {0, 1} are the corresponding labels, for j ∈ {1, 2, . . . , n}. The
resulting first few values of Θ are:

Θ(0) =

[
3
0

]
, Θ(1) =

[
0
2

]
, Θ(2) =

[
2
3

]
, Θ(3) =

[
2
2

]
.

Recall that

∂

∂θ
fk(Θ) = x(k)(h(x(k),Θ)− y(k)),

∂

∂θ0
fk(Θ) = h(x(k),Θ)− y(k).

(a) Find x(i(1)), x(i(2)), x(i(3)). Show your reasoning.

Solution: xi(1) = −1.5, yi(1) = 1, xi(2) = 2, yi(2) = 1, xi(3) = 0, yi(3) = 0
∂

∂θ0
fi(Θ) = g(i) − y(i), ∂

∂θfi(Θ) = (g(i) − y(i))x(i)

At iteration 1,

2 = 0− η(g(1) − y(1))

0 = 3− η(g(1) − y(1))x(1)

⇒ −2 = η(g(1) − y(1)) < 0 ⇒ y(1) = 1

0 = 3 + 2x(1) ⇒ x(1) = −3
2

At iteration 2,

3 = 2− η(g(2) − y(2))

2 = 0− η(g(2) − y(2))x(2)

⇒ −1 = η(g(2) − y(2)) < 0 ⇒ y(2) = 1

2 = 0 + x(1) ⇒ x(2) = 2
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At iteration 3,

2 = 3− η(g(3) − y(3))

2 = 2− η(g(3) − y(3))x(3)

⇒ 1 = η(g(i) − y(3)) > 0 ⇒ y(3) = 0

2 = 2− x(3) ⇒ x(3) = 0

Conflict:

At iteration 3,

1 = 3− η(g(3) − y(3))

6 = 2− η(g(3) − y(3))x(3)

⇒ 2 = η(g(i) − y(3)) > 0 ⇒ y(3) = 0

6 = 2− 2x(3) ⇒ x(3) = −2 Alternate approach:

The update rule for SGD is given as

Θ(t) = Θ(t−1) − η(t)∇Θfi(t)(Θ
(t−1)) (1)

First, let’s take this rule and break it up into θ and θ0 so that we can see things more
clearly.

θ(t) = θ(t−1) − η(t)
∂

∂θ
fi(t)(Θ)

= θ(t−1) − η(t)xi(t)
(
h(xi(t))− yi(t)

) (2)

θ
(t)
0 = θ

(t−1)
0 − η(t)

∂

∂θ0
fi(t)(Θ)

= θ
(t−1)
0 − η(t)

(
h(xi(t))− yi(t)

) (3)

Equation (2) and (3) seems very similar except for the xi(t) term, so let’s rearrange
these two equations to

θ(t) − θ(t−1) = −η(t)xi(t)
(
h(xi(t))− yi(t)

)
(4)

and

θ
(t)
0 − θ

(t−1)
0 = −η(t)

(
h(xi(t))− yi(t)

)
(5)

Now, if we divide Equation (4) by (7), we can isolate the x(i(t) term!

θ(t) − θ(t−1)

θ
(t)
0 − θ

(t−1)
0

= xi(t) (6)
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For your convenience, we repeat that the resulting first few values of Θ are:

Θ(0) =

[
3
0

]
, Θ(1) =

[
0
2

]
, Θ(2) =

[
2
3

]
, Θ(3) =

[
2
2

]
.

(b) Find y(i(1)), y(i(2)), y(i(3)). Show your reasoning. Hint: recall that y(j) ∈ {0, 1}.

Solution: xi(1) = −1.5, yi(1) = 1, xi(2) = 2, yi(2) = 1, xi(3) = 0, yi(3) = 0
∂

∂θ0
fi(Θ) = g(i) − y(i), ∂

∂θfi(Θ) = (g(i) − y(i))x(i)

At iteration 1,

2 = 0− η(g(1) − y(1))

0 = 3− η(g(1) − y(1))x(1)

⇒ −2 = η(g(1) − y(1)) < 0 ⇒ y(1) = 1

0 = 3 + 2x(1) ⇒ x(1) = −3
2

At iteration 2,

3 = 2− η(g(2) − y(2))

2 = 0− η(g(2) − y(2))x(2)

⇒ −1 = η(g(2) − y(2)) < 0 ⇒ y(2) = 1

2 = 0 + x(1) ⇒ x(2) = 2

At iteration 3,

2 = 3− η(g(3) − y(3))

2 = 2− η(g(3) − y(3))x(3)

⇒ 1 = η(g(i) − y(3)) > 0 ⇒ y(3) = 0

2 = 2− x(3) ⇒ x(3) = 0

Conflict:

At iteration 3,

1 = 3− η(g(3) − y(3))

6 = 2− η(g(3) − y(3))x(3)

⇒ 2 = η(g(i) − y(3)) > 0 ⇒ y(3) = 0

6 = 2− 2x(3) ⇒ x(3) = −2

Alternate approach:

Now that we can solve for xi(t), let’s solve for yi(t). First, note that gi(t) = h(xi(t),Θ(t−1)) =
σ(θxi(t)+θ0) ∈ (0, 1) due to the nature of sigmoid. Let’s go back to Equation (7) since
it contains y and is simpler than Equation (4).

θ
(t)
0 − θ

(t−1)
0 = −η(t)

(
gi(t) − yi(t)

)
= η(t)

(
yi(t) − gi(t)

)
(7)

Since η > 0 (else this wouldn’t be gradient descent!), we can state that

sign
(
θ
(t)
0 − θ

(t−1)
0

)
= sign

(
yi(t) − gi(t)

)
=


positive if yi(t) = 1,

negative if yi(t) = 0,

0 never

(8)
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The second inequality is true since yi(t) ∈ {0, 1} and gi(t) ∈ (0, 1). Note the difference
between curly brackets (a finite set) and parenthesis (open interval) and square bracket
(close interval). You should think about why this value cannot be 0 before convergence!

Plugging the given values from the main test in, we get that

t 0 1 2 3

θ(t) 3 0 2 2

θ
(t)
0 0 2 3 2

θ(t) − θ(t−1) −3 2 0

θ
(t)
0 − θ

(t−1)
0 2 1 −1

xi(t) = θ(t)−θ(t−1)

θ
(t)
0 −θ

(t−1)
0

−1.5 2 0

yi(t) = sign(θ
(t)
0 − θ

(t−1)
0 ) 1 1 0
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Slippery Slope

5. (20 points) Alice, Bob, and Carl are debating the utility of non-linear activation functions:

• Alice believes that ReLUs rule! (After all, it’s right there in the name.)

• Bob thinks that we should always use sigmoids.

• Carl wants to invent their own activation function.

Consider the following neural network:

(a) We follow Alice’s suggestion and keep layer-1 activation as ReLUs. Recall that the ReLU
function is defined as f(z) := max(z, 0). Assume that we let the derivative of ReLU at
z = 0 be zero. For this part, answer with a real number; if you believe the set up isn’t
enough to determine a real-valued answer, answer “it depends”.

i. If a11 = 0.5, what is
∂a11
∂z11

?

Solution: Gradient is 1

ii. If a11 = 0.5, what is
∂a11
∂x1

?

Solution: It depends (on w1
11.)

iii. If a11 = 0, what is
∂a11
∂x1

?

Solution: Gradient is 0

Page 21



Name:

(b) We now follow Alice’s preference to have the layer-2 activation as ReLUs as well. Suppose
the current weights are w2

0,1 = 1, w2
1,1 = 1, w2

2,1 = 1. The final output a21 is 0. Using a
step-size of 0.1, what would be the updated values of these weights?

Solution: The gradient is 0, so the weights are unchanged

(c) Suppose instead we follow Bob’s desire to keep layer-1 activation as sigmoids. Recall that
the sigmoid function is defined as f(z) := 1

1+exp (−z) . For this part, answer with a real
number; if you believe the setup isn’t enough to determine a real-valued answer, answer
“it depends”.

i. If a11 = 0.5, what is
∂a11
∂z11

?

Solution: (1-0.5)*0.5 = 0.25

ii. If a11 = 0.2, what is
∂a11
∂x1

?

Solution: It depends.

iii. If a11 = 0.8, what is
∂a11
∂x1

?

Solution: It depends.
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(d) Carl argues that both sigmoid and ReLU suffer from having a large portion of the input
space where the gradients are zero (or almost zero) – which can make backpropagation
very difficult.

i. Suppose that we used sigmoids in our network (reproduced above for your conve-
nience). In particular, during an SGD update, these sigmoid units may have (nearly)
zero gradient, that is,

∂aij
∂zij

≈ 0

where i, j = 1, 2.
Would you agree with Carl’s argument that having near-zero gradients could be trou-
blesome for learning? Explain your reasoning.

Solution: Zero-gradient issues can be troublesome during training because they
halt learning. In an SGD update, if all of the activation functions contribute a
zero gradient, the partial derivative of the loss with respect to any of the model
weights will be zero, due to the chain rule. Therefore, no updates will be made to
the model parameters, meaning the model stops learning.

ii. Alice and Bob argue that in reality people use either sigmoids or ReLU for good
reason, and that the scenario that Carl described do not happen that frequently in
practice. What might be the reason? Explain your reasoning.

Solution: In practice, there are multiple data points and multiple units, and we
randomly sample in SGD – we may not frequently get ”unlucky” data points
such that all activation functions operate in a region with zero gradient (this is
especially true if the network is deep, and/or if there’re lots of data points).
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(e) Carl proposes a “Nike”-like swoosh type of activation function, defined as

f(z) = −2 · e−1·(z−3)2 + 0.3 · z

and graphed below:

If we use this activation function in the first layer, and let z1 = [z11 , z
1
2 ]

T be the first layer
pre-activation output, and a1 = [a11, a

1
2]
T be the first layer post-activation output, what

would be ∂a1

∂z1
? (We are looking for a symbolic answer only, not a specific number.)

Solution: A 2-by-2 diagonal matrix:(
−2(6− 2z11) · e−(z11−3)2 + 0.3 0

0 −2(6− 2z12) · e−(z12−3)2 + 0.3

)
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Judging by the First Steps

6. (18 points) Let f : R → R be an unknown function. Consider the following additional as-
sumptions (A)-(C) one could make about f(·):

(A) f(·) is differentiable everywhere;

(B) f(·) is differentiable everywhere and convex;

(C) f(·) is the regularized linear regression objective function

f(θ) = λθ2 +
1

n

n∑
k=1

(θxk − yk)
2

for some λ > 0, n ∈ {1, 2, 3, . . . }, and real x1, . . . , xn, y1, . . . , yn.

The standard gradient descent algorithm

θ(t) = θ(t−1) − η∇θf(θ
(t−1)) (t = 1, 2, . . . )

with initial guess θ(0) = 0 and some positive, fixed learning rate η > 0 is applied to try to
find an argument of minimum of f(·) numerically. Knowing that the first two steps of this
algorithm have resulted in θ(1) = −1 and θ(2) = 1, as shown below, what can be learned about
f(·) based on this information?

t θ(t−1) θ(t)

1 0 −1
2 −1 1
3 1 ?

-

θ(0) = 0

x x x θ

θ(1) = −1 θ(2) = 1

(a) First, consider assumption (C). As the objective function is quadratic, its gradient ∇θf(θ)
will be a linear function of the form ∇θf(θ) = θa+ b. Write down a and b in terms of the
data {xi, yi}ni=1 and regularization hyperparameter λ.

Solution:

a = 2λ+
2

n

n∑
k=1

x2k

b = − 2

n

n∑
k=1

xkyk

Explanation:

Under assumption (C), f is

f(θ) = λθ2 +
1

n

n∑
k=1

(θxk − yk)
2 (9)
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So the gradient is

∇θf(θ) = 2λθ +
2

n

n∑
k=1

(θxk − yk)xk

=

(
2λ+

2

n

n∑
k=1

x2k

)
θ +

(
− 2

n

k∑
k=1

xkyk

) (10)

From here, we can infer that

a = 2λ+
2

n

n∑
k=1

x2k (11)

and

b = − 2

n

k∑
k=1

xkyk (12)
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(b) Find the set Θ3 of all possible values of θ(3).

i. under assumption (C):
Hint: Your answer should be a real number.

Solution: Θ3 = {−3} Conflict: Θ3 = {−5
2}

Explanation: Under assumption (C) and from part (a), we can state that the
gradient update rule is

θt = θt−1 − η∇θf(θ
t−1) = θt−1 − η(aθt−1 + b) = (1− ηa)θt−1 − ηb (13)

Note that a and b are constant since this is not stochastic gradient descent and η
is fixed, so from the given iterations of θ, we can solve for ηa and ηb.
At t = 1, the update rule is

θ(1) = θ(0) − ηaθ(0) − ηb

−1 = 0− ηa(0)− ηb

ηb = 1 (14)

At t = 2, the update rule is

θ(2) = θ(1) − ηaθ(1) − ηb

1 = −1 + ηa− 1

ηa = 3 (15)

Now we can plug the values for ηa and ηb into the update rule to get

θt = (1− ηa)θt−1 − ηb = −2θt−1 − 1 (16)

When t = 2, we have that

θ(3) = −2θ(2) − 1 = −2(1)− 1 = −3 (17)

Therefore, Θ3 = {−3}.

ii. under assumption (B):
Hint: Use the fact that the derivative of a convex scalar function is non-decreasing.

Solution: Θ3 = (−∞, 0]
Explanation:
Using the hint, we know that the gradient at θ = 1 is weakly greater than the
gradient at θ = 0. This means that, using the fixed η, the magnitude of the update
step at at θ = 1 is bigger or equal to the magnitude of the update step at θ = 0,
which was 1 unit to the left. Therefore, after the update step for θ = 1, we will
end up somewhere to the left of θ = 0. The final solution is then Θ3 = (−∞, 0],
inclusive of 0 because the gradient is weakly greater instead of strictly greater.

iii. under assumption (A):
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Solution: Θ3 = (−∞,+∞)
Explanation:
Under assumption (A), we can design the gradient of f at θ = 1 such that the
next θ value after update could be any number on the real, so the answer is
Θ3 = R = (−∞,∞)
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(c) Find the set Θmin of all possible values of the argument of minimum of f (if it has one).

i. under assumption (C):
Hint: Your answer should be a real number.

Solution: Θmin = {−1/3} Conflict: Θ3 = {−4
5}

Explanation: The gradient of f is aθ + b, and it equals zero only when θ is at
its minimum under assumption (C). Therefore, θmin = −b

a = −ηb
ηa = −1

3 , plugging

in the values we found in (15) and (14). The final answer is then Θmin = {−1
3 }.

ii. under assumption (B):
Hint: You may want to try drawing a rough sketch of ∇θf(θ) from the information
you have.

Solution: Θmin = (−1, 0)
Explanation:
The update step at θ = 0 moves θ to the left by one unit, and then the update
step at θ = 1 moves it to the right by two units, overshooting the minimum
and will eventually zigzag its way to positive infinity. Therefore, the minimum is
somewhere in the interval Θmin = (−1, 0). This is non inclusive since the gradient
at the end points are not zero (else we would not move after update step).

iii. under assumption (A):

Solution: Θmin = (−∞,−1) ∪ (−1, 0) ∪ (0,+∞)
Explanation:
As with the case in part (a), we can design the function f to have the minimum
point anywhere on the real except for θ = −1 and θ = 0. This is because from the
set up, the gradient at these points are non-zero (else we would not move after
update step), implying that the minimum is not here. Therefore, the answer is
Θmin = (−∞,−1) ∪ (−1, 0) ∪ (0,∞).
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(d) Is it possible that, as the sequence of gradient descent steps continues starting from θ(0) =
0, θ(1) = −1, θ(2) = 1, that θ(t) will converge to the argument of minimum of f(·) as
t → +∞?

i. under assumption (C):

Solution:
⃝ Possible

√
Impossible

Explanation: From the first two iterations, we can see that the learning rate η
is too large and we are diverging.

ii. under assumption (B):

Solution:√
Possible

⃝ Impossible

iii. under assumption (A):

Solution:√
Possible

⃝ Impossible

Page 30


