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Optimization + first-principle physics


https://shenshen.mit.edu/demos/gifs/atlas_darpa_overall.gif



https://s3.amazonaws.com/media-p.slid.es/videos/1350152/Jg2VLvbO/bi-manual_nutella_on_toast.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/PSVOiCD8/book_page_w__recovery.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/MmRrOmfd/bi-manual_berry_scooping.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/M1Uv4St7/bi-manual_potato_peeling.mp4

https:/ /www.youtube.com/embed / fn3KWM1kuAw?start=1&enablejsapi=1



https://www.youtube.com/embed/fn3KWM1kuAw?start=1&enablejsapi=1

Outline

e Recap: ML set up, terminology

e Ordinary least-square regression

= Closed-form solutions (when exists)

= Cases when closed-form solutions don't exist
o mathematically, practically, visually

e Regularization

« Hyperparameter and cross-validation
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Recall lab1 intro

How do we learn?

y A
e Have data; have hypothesis class o ®
e Want to choose (learn) a good T
hypothesis A& (or more concretely, ‘ >
a set of parameters) v S
x )
How to get it: D, — | learning

(Next time!) algorithm




Example: predict pollution level < Y «co ®
(Training) data By Dfreeeee e d Y
* ntraining data points é L
* For data point {1,...,n) n:? :
e [Feature vector (1'%1

2@ = (", .. )T e RY
e Label ¥ eR

e Training data Dn = {(=™,yW),..., (@™, y™)}

Satellite reading

What do we want? A good way to label new points

How to label? Hypothesis A : R* — R Is this a good hypothesis?

T=>| h | —>Y « Example h: For any x, h(x) = 1,000,000




How good is a regression hypotheens’?

» Should predict well on future data ' 4 *, o
» How good is a regressor atone 2 o °
point? S |e 3
* Loss L(g,a) % 1 ’
* Ex: squared loss 0 4¢

. >
L(g.a) = (g - a>2 o
Satellite reading

e Training error: &,( ZL
1 N
+ Test error (n'new points): £(h) = — > L(h(z®),y?)
1=n—+1

 Oneidea: prefer hto h if E,(h) < En(h)



(A) k=1
(B) k=5

Recall lab1 Q1

random_regress (X, Y, k): .
d, n = X.shape

ths = np.random.randn(d, k)

thOs = np.random.randn(1l, k) (©) k=20

errors = lin reg err(X, Y, ths, thO0s.T)

i = np.argmin(errors) 10

0.0 0.2 0.4 0.6 0.8 10

theta, thetaO = ths[:,i:i+1], thOs[:,i:i+1]
(theta, thetal), errors[i] » Will this method eventually get arbitrarily close to the best
solution? What do you think about the efficiency of this

method?
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Linear regression: the analytical way

« How about we just consider all hypotheses in our class and
choose the one with lowest training error?

« We'll see: not typically straightforward

« But for linear regression with square loss: can do it!

e In fact, sometimes, just by plugging in an equation!



Linear regressors

* Hypothesis class H: set of h

* Alinear regression hypothesis
when d=1:

h(CL’) = 0x + 90

Pollution level

yA °
e ©
©)| N— s
© o °
< ‘ 5 >
* x§2) T

Satellite reading
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Linear regressors

* Hypothesis class H : set of A

* Alinear regression hypothesis
when d=1:

h(ﬂ?; 0, 90) = 0x + 90

* Alinear reg. hypothesis when d>1:

h(il?; 9, 90) = 01331 + -+ Od.%'d + 90
=0z ~+ 0y
OR
h(.’L‘) — 91371 + -+ ded + (90)(1)
=0"x

Pollution level

Ya °
e ©
©)| N— s
© o *
< ‘ 5 >
T

Satellite reading



* Alinear reg. hypothesis when d>1:

h(z;0,00) = 6121 + -+ + Oqzq + O

=0"z+ 0,
1x2,2x1

OR
h(iL‘) — 912’}1 + -+ OdCL‘d + (00)(1)

—0'x

1x3,3x1

* Qur hypothesis class in linear regression
will be the set of all such h




e Recall: training loss:
1 SI (h (wa)) ,y(z‘))
n -
1=1
 With squared loss:
o (n (=) )
"
« Using linear hypothesis (with extra "1" feature):
LN (g7 _ )’
w2 (072 =00)

« With given data, the error only depends on 6, so let's call the
loss J(0)



Now training loss:

J(6)
Define
_ :1:(1”
X = :
K

-y (gTw(Z) _ y(n)z
n
1=1
1 e e o -
— (X9 -V)T(X9-7)
n
oD




e Goal: find 8 to minimize

J(0) = Z(X0— V) (X0—7)

n
e Q: what kind of function is J(6) and what does it look like?

o A: Quadratic function. Looks like either a "bowl" or "half-pipe"




« When

1 - - - -
J(0) = E(XH ~Y) (X6-Y)
looks a "bowl" (typically does)
 Uniquely minimized at a point if gradient at that point is zero and

function "curves up" [see linear algebra]

Set Gradient VyJ(0) £ 0

- ~N\—1 - _ .
g+ — (XTX) X7y



~_ N1 ~__ -
The beauty of §* = (X X ) X 'Y: simple, general, unique minimizer




« Now, the catch (we'll see, all lead to half-pipe case)
.~ <~ -~ ~
+ 0" = (X7X) XY is not well-defined if (X X ) is not invertible
o Indeed, (X' X ) is not invertible if and only if X is not full column rank

ol T

Ax and Ay are linear combinations of columns of 4.

1 2
Ig gl [ ] =alx y=lax ay]



e Indeed, (X' X ) is not invertible if and only if X is not full column rank

o Recall
X is not full column rank
2P 2] Lifn<d
X = : - 2. if columns (features) in X have linear
xgn) - xgn) dependency

o L

Ax and Ay are linear combinations of columns of 4.

I h; = 4lx ) =lax 4y



Quick Summary: 1. if n<d (i.e. not enough data)
. 2. if columns (features) in X have
linear dependency (aka co-linearity)

Typically 6* = (X’ X ) X 'Y o This formula = is not well-defined

« Infinitely many optimal hyperplanes

(@9
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« Sometimes, noise can resolve the invertibility issue
o but still lead to undesirable results

« How to choose among hyperplanes?
o Prefer 6 with small magnitude



Ridge Regression
« Add a square penalty on the magnitude

¢ Juae (0) = H(EO- D) (RO-T) A0
e \is a so-called "hyperparameter”

o Setting Vg Jidge (0) = 0 we get

cor = (XX 4 A1) X7V

« 0* always exists, and is always the unique optimal parameters

o (If there's an offset, see recitation/hw for discussion.)
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Cross-validation

e (1)

Cross-validate (D, , k)

Divide D, into k chunks Dp1,...,Dpi (of
roughly equal size)
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Cross-validation

(D) (1)

Cross-validate (D, , k)
Divide D, into k chunks Dp1,...,Dpi (of
roughly equal size)
for 1 =1 to k
train h; on D,\D,,; (i.e. except chunk i)



Cross-validation

2D 2 ()

Cross-validate (D, , k)
Divide D, into k chunks Dp1,...,Dpk (of
roughly equal size)
for i =1 to k
train h; on Dy\D,; (i.e. except chunk 1)
compute “test” error &(hi,Dn;) of h; on Dy,



Cross-validation

2D 2

Cross-validate (D, , k)
Divide D, into k chunks Dp1,...,Dpr (of
roughly equal size)
for i = 1 to k
train h; on Dy\D,; (i.e. except chunk i)
compute “test” error &(h;,D,;) of h; on Dy,

k
1
Return Z Z E(hi,Dp.i)

1=1



Comments on (cross)-validation

good idea to shuffle data first
a way to "reuse” data
it's not to evaluate a hypothesis

rather, it's to evaluate learning algorithm (e.g. hypothesis class
choice, hyperparameters)

Could e.g. have an outer loop for picking good hyperparameter
or hypothesis class



Summary

« One strategy for finding ML algorithms is to reduce the ML
problem to an optimization problem.

« For the ordinary least squares (OLS), we can find the optimizer
analytically, using basic calculus! Take the gradient and set it to
zero. (Generally need more than gradient info; suffices in OLS)

« Two ways to approach the calculus problem: write out in terms of
explicit sums or keep in vector-matrix form. Vector-matrix form is
easier to manage as things get complicated (and they will!)

e There are some good discussions in the lecture notes.



Summary

« What does it mean for linear regression to be well posed.

« When there are many possible solutions, we need to indicate our
preference somehow.

e Regularization is a way to construct a new optimization problem.

« Least-squares regularization leads to the ridge-regression formulation.
Good news: we can still solve it analytically!

« Hyperparameters and how to pick them; cross-validation.



We'd love to hear
your thoughts.

Thanks!


https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP8WwjSzZeQ/viewform?embedded=true
https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP8WwjSzZeQ/viewform?embedded=true

