

https://introml.mit.edu/

6.390 Intro to Machine Learning

Lecture 2: Linear regression and regularization

Shen Shen Sept 6, 2024

(many slides adapted from Tamara Broderick)

Instructors

Course Assistant

6.390-personal@mit.edu

Tess Smidt

Mardavij Roozbehani

Pete Szolovits

Logistical issues? Personal concerns? We'd love to help out!

Abhay Basireddy

Kevin Bunn

Audrey Douglas

Song Kim

Kartikesh Mishra

Haley Nakamura

Anh Nguyen

Linh Nguyen

plus ~40 awesome LAs

https://shenshen.mit.edu/demos/gifs/atlas_darpa_overall.gif

Optimization + first-principle physics

https://www.youtube.com/embed/fn3KWM1kuAw?start=1&enablejsapi=1

Outline

- Recap: ML set up, terminology
- Ordinary least-square regression
 - Closed-form solutions (when exists)
 - Cases when closed-form solutions don't exist
 - mathematically, practically, visually
- Regularization
- Hyperparameter and cross-validation

Outline

- Recap: ML set up, terminology
- Ordinary least-square regression
 - Closed-form solutions (when exists)
 - Cases when closed-form solutions don't exist
 - mathematically, practically, visually
- Regularization
- Hyperparameter and cross-validation

Recall lab1 intro

How do we learn?

- Have data; have hypothesis class
- Want to choose (learn) a good hypothesis *h* (or more concretely, a set of parameters)

How to get it: (Next time!)

$$\mathcal{D}_n \longrightarrow \begin{array}{c} \text{learning} \\ \text{algorithm} \end{array} \longrightarrow h$$

Example: predict pollution level

(Training) data

- *n* training data points
- For data point i ∈ {1,...,n}
 Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^\top \in \mathbb{R}^d$$

• Label $y^{(i)} \in \mathbb{R}$

Is this a *good* hypothesis?

• Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

How to label? Hypothesis $h : \mathbb{R}^d \to \mathbb{R}$

 $x \longrightarrow h \longrightarrow y$

• Example *h*: For any *x*, h(x) = 1,000,000

• One idea: prefer h to \tilde{h} if $\mathcal{E}_n(h) < \mathcal{E}_n(\tilde{h})$

1.0 -

0.5 -

0.0

-0.5

-1.0

-1.5

0.0

Recall lab1 Q1

•••

def random_regress(X, Y, k):
 d, n = X.shape

generate k random hypotheses
ths = np.random.randn(d, k)
th0s = np.random.randn(1, k)

compute the mean squared error of each
hypothesis on the data set

errors = lin_reg_err(X, Y, ths, th0s.T)

Find the index of the hypotheses with the
lowest error

i = np.argmin(errors)

return the theta and theta0 parameters
that define that hypothesis

theta, theta0 = ths[:,i:i+1], th0s[:,i:i+1]
return (theta, theta0), errors[i]

1.0

0.5

0.0

-0.5

-1.0

-1.5

(C) k=20

0.4

0.6

0.8

1.0

0.2

(D) k=50

0.6

0.8

1.0

(B) k=5

 Will this method eventually get arbitrarily close to the best solution? What do you think about the efficiency of this method?

Outline

- Recap: ML set up, terminology
- Ordinary least-square regression
 - Closed-form solutions (when exists)
 - Cases when closed-form solutions don't exist
 - mathematically, practically, visually
- Regularization
- Hyperparameter and cross-validation

Linear regression: the analytical way

- How about we just consider all hypotheses in our class and choose the one with lowest training error?
- We'll see: not typically straightforward
- But for linear regression with square loss: can do it!
- In fact, sometimes, just by plugging in an equation!

Linear regressors

- Hypothesis class \mathcal{H} : set of h
- A linear regression hypothesis when *d*=1:

$$h(x) = \theta x + \theta_0$$

Linear regressors

- Hypothesis class \mathcal{H} : set of h
- A linear regression hypothesis when d=1: $h(x; \theta, \theta_0) = \theta x + \theta_0$ parameters

Linear regressors

- Hypothesis class \mathcal{H} : set of h
- A linear regression hypothesis when d=1: $h(x; \theta, \theta_0) = \theta x + \theta_0$ parameters
- A linear reg. hypothesis when $d \ge 1$: $h(x; \theta, \theta_0) = \theta_1 x_1 + \dots + \theta_d x_d + \theta_0$ $= \theta^\top x + \theta_0$

OR

$$h(x) = \theta_1 x_1 + \dots + \theta_d x_d + (\theta_0)(1)$$

$$= \theta^\top x$$

• A linear reg. hypothesis when $d \ge 1$:

$$h(x;\theta,\theta_0) = \theta_1 x_1 + \dots + \theta_d x_d + \theta_0$$

= $\theta^\top x + \theta_0$
= $1 \times 2, 2 \times 1$

OR

$$h(x) = \theta_1 x_1 + \dots + \theta_d x_d + (\theta_0)(1)$$

$$= \theta^\top x$$

1x3,3x1

 Our hypothesis class in linear regression will be the set of all such *h* Hypoth

• Recall: training loss:

$$rac{1}{n}\sum_{i=1}^{n}L\left(h\left(x^{(i)}
ight),y^{(i)}
ight)$$

• With squared loss:

$$rac{1}{n}\sum_{i=1}^n \left(h\left(x^{(i)}
ight)-y^{(i)}
ight)^2$$

• Using linear hypothesis (with extra "1" feature):

$$rac{1}{n}\sum_{i=1}^n \left(heta^ op x^{(i)} - y^{(i)}
ight)^2$$

• With given data, the error only depends on θ , so let's call the loss $J(\theta)$

Now training loss:

$$J(heta) = rac{1}{n}\sum_{i=1}^n \left(heta^ op x^{(i)} - y^{(i)}
ight)^2$$

$$= \frac{1}{n} (\tilde{X}\theta - \tilde{Y})^{\top} (\tilde{X}\theta - \tilde{Y})$$

Define

$$\tilde{X} = \begin{bmatrix} x_1^{(1)} & \cdots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(n)} & \cdots & x_d^{(n)} \end{bmatrix}$$
nxd

$$\tilde{Y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

• Goal: find θ to minimize

$$J(heta) = rac{1}{n} (ilde{X} heta - ilde{Y})^ op (ilde{X} heta - ilde{Y})$$

- Q: what kind of function is $J(\theta)$ and what does it look like?
- A: Quadratic function. Looks like either a "bowl" or "half-pipe"

• When

$$J(heta) = rac{1}{n} (ilde{X} heta - ilde{Y})^ op (ilde{X} heta - ilde{Y})$$

looks a "bowl" (typically does)

• Uniquely minimized at a point if gradient at that point is zero and

function "curves up" [see linear algebra]

dx1

Set Gradient
$$abla_{ heta} J(heta) \stackrel{ ext{set}}{=} 0$$

$$heta^* = \left(ilde{X}^ op ilde{X}
ight)^{-1} ilde{X}^ op ilde{Y}$$

The beauty of $\theta^* = \left(\tilde{X}^{ op} \tilde{X}\right)^{-1} \tilde{X}^{ op} \tilde{Y}$: simple, general, unique minimizer

• Now, the catch (we'll see, all lead to half-pipe case)

•
$$\theta^* = \left(\tilde{X}^\top \tilde{X} \right)^{-1} \tilde{X}^\top \tilde{Y}$$
 is not well-defined if $\left(\tilde{X}^\top \tilde{X} \right)$ is not invertible

• Indeed, $\left(ilde{X}^{ op} ilde{X}
ight)$ is not invertible if and only if $ilde{X}$ is not full column rank

Ax and Ay are linear combinations of columns of A.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = A \begin{bmatrix} \mathbf{x} & \mathbf{y} \end{bmatrix} = \begin{bmatrix} A\mathbf{x} & A\mathbf{y} \end{bmatrix}$$

- Indeed, $\left(\tilde{X}^{ op} \tilde{X} \right)$ is not invertible if and only if \tilde{X} is not full column rank
- Recall

- \tilde{X} is not full column rank

Ax and Ay are linear combinations of columns of A.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = A[\mathbf{x} \quad \mathbf{y}] = \begin{bmatrix} A\mathbf{x} & A\mathbf{y} \end{bmatrix}$$

Quick Summary:

Typically
$$heta^* = \left(ilde{X}^{ op} ilde{X}\right)^{-1} ilde{X}^{ op} ilde{Y}$$

 if *n*<*d* (i.e. not enough data)
 if columns (features) in X have linear dependency (aka co-linearity)

This formula > is not well-defined
Infinitely many optimal hyperplanes

60

Outline

- Recap: ML set up, terminology
- Ordinary least-square regression
 - Closed-form solutions (when exists)
 - Cases when closed-form solutions don't exist
 - mathematically, practically, visually
- Regularization
- Hyperparameter and cross-validation

- Sometimes, noise can resolve the invertibility issue
- but still lead to undesirable results

- How to choose among hyperplanes?
- Prefer θ with small magnitude

Ridge Regression

 $(\lambda > 0)$

• Add a square penalty on the magnitude

•
$$J_{ ext{ridge}}\left(heta
ight) = rac{1}{n} (ilde{X} heta - ilde{Y})^{ op} (ilde{X} heta - ilde{Y}) + \lambda \| heta\|^2$$

• λ is a so-called "hyperparameter"

• Setting
$$abla_{ heta} J_{ ext{ridge}}\left(heta
ight) = 0$$
 we get

$$ullet \ heta^* = \left(ilde{X}^ op ilde{X} + n\lambda I
ight)^{-1} ilde{X}^ op ilde{Y}$$

- θ^* always exists, and is always the unique optimal parameters
- (If there's an offset, see recitation/hw for discussion.)

Outline

- Recap: ML set up, terminology
- Ordinary least-square regression
 - Closed-form solutions (when exists)
 - Cases when closed-form solutions don't exist
 - mathematically, practically, visually
- Regularization
- Hyperparameter and cross-validation

Cross-validate (\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size)

Cross-validate (\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size) **for** i = 1 to k

Cross-validate (\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size) **for** i = 1 to k

• • •

Cross-validate (\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size) **for** i = 1 to k

Cross-validate(\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size) **for** i = 1 to ktrain h_i on $\mathcal{D}_n \setminus \mathcal{D}_{n,i}$ (i.e. except chunk i)

Cross-validate (\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size) **for** i = 1 to ktrain h_i on $\mathcal{D}_n \setminus \mathcal{D}_{n,i}$ (i.e. except chunk i) compute "test" error $\mathcal{E}(h_i, \mathcal{D}_{n,i})$ of h_i on $\mathcal{D}_{n,i}$

Cross-validate (\mathcal{D}_n , k) Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1}, \ldots, \mathcal{D}_{n,k}$ (of roughly equal size) **for** i = 1 to ktrain h_i on $\mathcal{D}_n \setminus \mathcal{D}_{n,i}$ (i.e. except chunk i) compute "test" error $\mathcal{E}(h_i, \mathcal{D}_{n,i})$ of h_i on $\mathcal{D}_{n,i}$ **Return** $\frac{1}{k} \sum_{i=1}^k \mathcal{E}(h_i, \mathcal{D}_{n,i})$

Comments on (cross)-validation

- good idea to shuffle data first
- a way to "reuse" data
- it's not to evaluate a hypothesis
- rather, it's to evaluate learning algorithm (e.g. hypothesis class choice, hyperparameters)
- Could e.g. have an outer loop for picking good hyperparameter or hypothesis class

Summary

- One strategy for finding ML algorithms is to reduce the ML problem to an optimization problem.
- For the ordinary least squares (OLS), we can find the optimizer analytically, using basic calculus! Take the gradient and set it to zero. (Generally need more than gradient info; suffices in OLS)
- Two ways to approach the calculus problem: write out in terms of explicit sums or keep in vector-matrix form. Vector-matrix form is easier to manage as things get complicated (and they will!)
- There are some good discussions in the lecture notes.

Summary

- What does it mean for linear regression to be well posed.
- When there are many possible solutions, we need to indicate our preference somehow.
- Regularization is a way to construct a new optimization problem.
- Least-squares regularization leads to the ridge-regression formulation.
 Good news: we can still solve it analytically!
- Hyperparameters and how to pick them; cross-validation.

https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP 8WwjSzZeQ/viewform?embedded=true

We'd love to hear your thoughts.

Thanks!