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Recall lab1 intro







Recall lab1 Q1

def random_regress(X, Y, k): 
    d, n = X.shape 
 
    # generate k random hypotheses 
    ths = np.random.randn(d, k) 
    th0s = np.random.randn(1, k) 
 
    # compute the mean squared error of each 
hypothesis on the data set 
    errors = lin_reg_err(X, Y, ths, th0s.T) 
 
    # Find the index of the hypotheses with the 
lowest error 
    i = np.argmin(errors) 
 
    # return the theta and theta0 parameters 
that define that hypothesis 
    theta, theta0 = ths[:,i:i+1], th0s[:,i:i+1] 
    return (theta, theta0), errors[i]
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Linear regression: the analytical way

How about we just consider all hypotheses in our class and

choose the one with lowest training error?

We’ll see: not typically straightforward

But for linear regression with square loss: can do it!

In fact, sometimes, just by plugging in an equation!











Recall: training loss:

With squared loss:                          

Using linear hypothesis (with extra "1" feature):                      

With given data, the error only depends on , so let's call the
loss 
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Now training loss:  
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n

1

i=1

∑
n

( ⊤ (i) (i))2

Define



Goal: find  to minimize                    

Q: what kind of function is  and what does it look like?

A: Quadratic function. Looks like either a "bowl" or "half-pipe"
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When                    

looks a "bowl" (typically does)

Uniquely minimized at a point if gradient at that point is zero and

function "curves up" [see linear algebra]
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θ =∗ (X~⊤X~)−1X~⊤Y~
Set Gradient ∇ J(θ)θ = set  0



The beauty of : simple, general, unique minimizerθ =∗ (X~⊤X~)−1 X~⊤Y~



 is not well-defined if  is not invertibleθ =∗ (X~⊤X~)−1 X~⊤Y~ (X~⊤X~)

Indeed,  is not invertible if and only if  is not full column rank(X~⊤X~) X
~

Now, the catch (we'll see, all lead to half-pipe case) 



Indeed,  is not invertible if and only if  is not full column rank(X~⊤X~) X
~

1. if <  n d

2. if columns (features) in  have linear
dependency

X
~

Recall
 is not full column rankX
~



θ =∗ (X~⊤X~)−1X~⊤Y~

Quick Summary: 1. if <  (i.e. not enough data)
2. if columns (features) in  have

linear dependency (aka co-linearity)

n d

X
~

 

This formula 👈  is not well-defined
Infinitely many optimal hyperplanes

Typically 

🥺

🥰
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🥰🥺

Sometimes, noise can resolve the invertibility issue
but still lead to undesirable results

How to choose among hyperplanes?
Prefer  with small magnitudeθ



Add a square penalty on the magnitude

J (θ) =ridge  ( θ −
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λ∥θ∥2

 is a so-called "hyperparameter"λ

Setting  we get∇ J (θ) =θ ridge  0

θ =∗ + nλI(X~⊤X~ )−1 X~⊤Y~

 always exists, and is always the unique optimal parametersθ∗

(If there's an offset, see recitation/hw for discussion.)

Ridge Regression
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Cross-validation



Cross-validation



Cross-validation

…



Cross-validation



Cross-validation



Cross-validation



Cross-validation



Comments on (cross)-validation

good idea to shuffle data first
a way to "reuse" data
it's not to evaluate a hypothesis
rather, it's to evaluate learning algorithm (e.g. hypothesis class
choice, hyperparameters)
Could e.g. have an outer loop for picking good hyperparameter
or hypothesis class



Summary

One strategy for finding ML algorithms is to reduce the ML
problem to an optimization problem.  
For the ordinary least squares (OLS), we can find the optimizer
analytically, using basic calculus!  Take the gradient and set it to
zero. (Generally need more than gradient info; suffices in OLS)
Two ways to approach the calculus problem: write out in terms of
explicit sums or keep in vector-matrix form. Vector-matrix form is
easier to manage as things get complicated (and they will!)
There are some good discussions in the lecture notes.



Summary

What does it mean for linear regression to be well posed.  

When there are many possible solutions, we need to indicate our

preference somehow.

Regularization is a way to construct a new optimization problem.

Least-squares regularization leads to the ridge-regression formulation.

 Good news: we can still solve it analytically!

Hyperparameters and how to pick them; cross-validation.



https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP
8WwjSzZeQ/viewform?embedded=true

Thanks!
We'd love to hear

your .thoughts

https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP8WwjSzZeQ/viewform?embedded=true
https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP8WwjSzZeQ/viewform?embedded=true

