
Intro to Machine Learning

https://introml.mit.edu/

Lecture 2: Linear regression and regularization

Shen Shen
Sept 6, 2024

(many slides adapted from)Tamara Broderick

https://introml.mit.edu/
https://tamarabroderick.com/

6.390-personal@mit.edu

Logistical issues? Personal concerns?
We’d love to help out!

plus ~40 awesome LAs

https://shenshen.mit.edu/demos/gifs/atlas_darpa_overall.gif

Optimization + first-principle physics

https://shenshen.mit.edu/demos/gifs/atlas_darpa_overall.gif

https://s3.amazonaws.com/media-p.slid.es/videos/1350152/Jg2VLvbO/bi-manual_nutella_on_toast.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/PSVOiCD8/book_page_w__recovery.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/MmRrOmfd/bi-manual_berry_scooping.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/M1Uv4St7/bi-manual_potato_peeling.mp4

https://www.youtube.com/embed/fn3KWM1kuAw?start=1&enablejsapi=1

https://www.youtube.com/embed/fn3KWM1kuAw?start=1&enablejsapi=1

Outline
Recap: ML set up, terminology

Ordinary least-square regression

Closed-form solutions (when exists)

Cases when closed-form solutions don't exist

mathematically, practically, visually

Regularization

Hyperparameter and cross-validation

Outline
Recap: ML set up, terminology

Ordinary least-square regression

Closed-form solutions (when exists)

Cases when closed-form solutions don't exist

mathematically, practically, visually

Regularization

Hyperparameter and cross-validation

Recall lab1 intro

Recall lab1 Q1

def random_regress(X, Y, k):
 d, n = X.shape

 # generate k random hypotheses
 ths = np.random.randn(d, k)
 th0s = np.random.randn(1, k)

 # compute the mean squared error of each
hypothesis on the data set
 errors = lin_reg_err(X, Y, ths, th0s.T)

 # Find the index of the hypotheses with the
lowest error
 i = np.argmin(errors)

 # return the theta and theta0 parameters
that define that hypothesis
 theta, theta0 = ths[:,i:i+1], th0s[:,i:i+1]
 return (theta, theta0), errors[i]

Outline
Recap: ML set up, terminology

Ordinary least-square regression

Closed-form solutions (when exists)

Cases when closed-form solutions don't exist

mathematically, practically, visually

Regularization

Hyperparameter and cross-validation

Linear regression: the analytical way

How about we just consider all hypotheses in our class and

choose the one with lowest training error?

We’ll see: not typically straightforward

But for linear regression with square loss: can do it!

In fact, sometimes, just by plugging in an equation!

Recall: training loss:

With squared loss:

Using linear hypothesis (with extra "1" feature):

With given data, the error only depends on , so let's call the
loss

L h x , y
n

1

i=1

∑
n

(((i)) (i))

h x − y
n

1

i=1

∑
n

(((i)) (i))2

θ x − y
n

1

i=1

∑
n

(⊤ (i) (i))2

θ

J(θ)

Now training loss:

J(θ) = θ x − y
n

1

i=1

∑
n

(⊤ (i) (i))2

Define

Goal: find to minimize

Q: what kind of function is and what does it look like?

A: Quadratic function. Looks like either a "bowl" or "half-pipe"

θ

J(θ) = (θ −
n

1
X
~

) (θ −Y
~ ⊤ X

~
)Y
~

J(θ)

🥰 🥺

When

looks a "bowl" (typically does)

Uniquely minimized at a point if gradient at that point is zero and

function "curves up" [see linear algebra]

J(θ) = (θ −
n

1
X
~

) (θ −Y
~ ⊤ X

~
)Y
~

θ =∗ (X~⊤X~)−1X~⊤Y~
Set Gradient ∇ J(θ)θ = set 0

The beauty of : simple, general, unique minimizerθ =∗ (X~⊤X~)−1 X~⊤Y~

 is not well-defined if is not invertibleθ =∗ (X~⊤X~)−1 X~⊤Y~ (X~⊤X~)

Indeed, is not invertible if and only if is not full column rank(X~⊤X~) X
~

Now, the catch (we'll see, all lead to half-pipe case)

Indeed, is not invertible if and only if is not full column rank(X~⊤X~) X
~

1. if < n d

2. if columns (features) in have linear
dependency

X
~

Recall
 is not full column rankX
~

θ =∗ (X~⊤X~)−1X~⊤Y~

Quick Summary: 1. if < (i.e. not enough data)
2. if columns (features) in have

linear dependency (aka co-linearity)

n d

X
~

This formula 👈 is not well-defined
Infinitely many optimal hyperplanes

Typically

🥺

🥰

Outline
Recap: ML set up, terminology

Ordinary least-square regression

Closed-form solutions (when exists)

Cases when closed-form solutions don't exist

mathematically, practically, visually

Regularization

Hyperparameter and cross-validation

🥰🥺

Sometimes, noise can resolve the invertibility issue
but still lead to undesirable results

How to choose among hyperplanes?
Prefer with small magnitudeθ

Add a square penalty on the magnitude

J (θ) =ridge (θ −
n
1 X
~

) (θ −Y
~ ⊤ X

~
) +Y
~

λ∥θ∥2

 is a so-called "hyperparameter"λ

Setting we get∇ J (θ) =θ ridge 0

θ =∗ + nλI(X~⊤X~)−1 X~⊤Y~

 always exists, and is always the unique optimal parametersθ∗

(If there's an offset, see recitation/hw for discussion.)

Ridge Regression

Outline
Recap: ML set up, terminology

Ordinary least-square regression

Closed-form solutions (when exists)

Cases when closed-form solutions don't exist

mathematically, practically, visually

Regularization

Hyperparameter and cross-validation

Cross-validation

Cross-validation

Cross-validation

…

Cross-validation

Cross-validation

Cross-validation

Cross-validation

Comments on (cross)-validation

good idea to shuffle data first
a way to "reuse" data
it's not to evaluate a hypothesis
rather, it's to evaluate learning algorithm (e.g. hypothesis class
choice, hyperparameters)
Could e.g. have an outer loop for picking good hyperparameter
or hypothesis class

Summary

One strategy for finding ML algorithms is to reduce the ML
problem to an optimization problem.
For the ordinary least squares (OLS), we can find the optimizer
analytically, using basic calculus! Take the gradient and set it to
zero. (Generally need more than gradient info; suffices in OLS)
Two ways to approach the calculus problem: write out in terms of
explicit sums or keep in vector-matrix form. Vector-matrix form is
easier to manage as things get complicated (and they will!)
There are some good discussions in the lecture notes.

Summary

What does it mean for linear regression to be well posed.

When there are many possible solutions, we need to indicate our

preference somehow.

Regularization is a way to construct a new optimization problem.

Least-squares regularization leads to the ridge-regression formulation.

 Good news: we can still solve it analytically!

Hyperparameters and how to pick them; cross-validation.

https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP
8WwjSzZeQ/viewform?embedded=true

Thanks!
We'd love to hear

your .thoughts

https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP8WwjSzZeQ/viewform?embedded=true
https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP8WwjSzZeQ/viewform?embedded=true

