
CHAPTER 9

Transformers

Transformers are a very recent family of architectures that have revolutionized fields like
natural language processing (NLP), image processing, and multi-modal generative AI.

Transformers were originally introduced in the field of NLP in 2017, as an approach
to process and understand human language. Human language is inherently sequential in
nature (e.g., characters form words, words form sentences, and sentences form paragraphs
and documents). Prior to the advent of the transformers architecture, recurrent neural net-
works (RNNs) briefly dominated the field for their ability to process sequential information
(RNNs are described in Appendix C for reference). However, RNNs, like many other ar-
chitectures, processed sequential information in an iterative/sequential fashion, whereby
each item of a sequence was individually processed one after another. Transformers offer
many advantages over RNNs, including their ability to process all items in a sequence in a
parallel fashion (as do CNNs).

Like CNNs, transformers factorize the signal processing problem into stages that in-
volve independent and identically processed chunks. However, they also include layers
that mix information across the chunks, called attention layers, so that the full pipeline can
model dependencies between the chunks.

In this chapter, we describe transformers from the bottom up. We start with the idea
of embeddings and tokens (Section 9.1). We then describe the attention mechanism (Sec-
tion 9.2). And finally we then assemble all these ideas together to arrive at the full trans-
former architecture in Section 9.3.

9.1 Vector embeddings and tokens

Before we can understand the attention mechanism in detail, we need to first introduce a
new data structure and a new way of thinking about neural processing for language.

The field of NLP aims to represent words with vectors (aka word embeddings) such that
they capture semantic meaning. More precisely, the degree to which any two words are
related in the ‘real-world’ to us humans should be reflected by their corresponding vectors
(in terms of their numeric values). So, words such as ‘dog’ and ‘cat’ should be represented
by vectors that are more similar to one another than, say, ‘cat’ and ‘table’ are. Nowadays,
it’s also typical for every individual occurrence of a word to have its own distinct repre-
sentation/vector. So, a story about a dog may mention the word ‘dog’ a dozen times, with

78

MIT 6.390 Fall 2024 79

each vector being slightly different based on its context in the sentence and story at large.
To measure how similar any two word embeddings are (in terms of their numeric val-

ues) it is common to use cosine similarity as the metric:

uTv

|u| |v|
= cos〈u, v〉 , (9.1)

where |u| and |v| are the lengths of the vectors, and 〈u, v〉 is the angle between u and v. The
cosine similarity is +1 when u = v, zero when the two vectors are perpendicular to each
other, and −1 when the two vectors are diametrically opposed to each other. Thus, higher
values correspond to vectors that are numerically more similar to each other.

While word embeddings – and various approaches to create them – have existed for
decades, the first approach that produced astonishingly effective word embeddings was
word2vec in 2012. This revolutionary approach was the first highly-successful approach of
applying deep learning to NLP, and it enabled all subsequent progress in the field, includ-
ing Transformers. The details of word2vec are beyond the scope of this course, but we note
two facts: (1) it created a single word embedding for each distinct word in the training cor-
pus (not on a per-occurrence basis); (2) it produced word embeddings that were so useful,
many relationships between the vectors corresponded with real-world semantic related-
ness. For example, when using Euclidean distance as a distance metric between two vectors,
word2vec produced word embeddings with properties such as (where vword is the vector
for word):

vparis − vfrance + vitaly ≈ vrome (9.2)

This corresponds with the real-world property that Paris is to France what Rome is to
Italy. This incredible finding existed not only for geographic words but all sorts of real-
world concepts in the vocabulary. Nevertheless, to some extent, the exact values in each
embedding is arbitrary, and what matters most is the holistic relation between all embed-
dings, along with how performant/useful they are for the exact task that we care about.

For example, an embedding may be considered good if it accurately captures the con-
ditional probability for a given word to appear next in a sequence of words. You probably
have a good idea of what words might typically fill in the blank at the end of this sentence:

After the rain, the grass was

Or a model could be built that tries to correctly predict words in the middle of sentences:

The child fell during the long car ride

The model can be built by minimizing a loss function that penalizes incorrect word guesses,
and rewards correct ones. This is done by training a model on a very large corpus of written
material, such as all of Wikipedia, or even all the accessible digitized written materials
produced by humans.

While we will not dive into the full details of tokenization, the high-level idea is straight-
forward: the individual inputs of data that are represented and processed by a model are
referred to as tokens. And, instead of processing each word as a whole, words are typically
split into smaller, meaningful pieces (akin to syllables). Thus, when we refer to tokens,
know that we’re referring to each individual input, and that in practice, nowadays, they
tend to be sub-words (e.g., the word ‘talked’ may be split into two tokens, ‘talk’ and ‘ed’).

Last Updated: 11/11/24 10:10:55

MIT 6.390 Fall 2024 80

9.2 Query, key, value, and attention

Attention is a strategy for processing global information efficiently, focusing just on the
parts of the signal that are most salient to the task at hand. What we present be-

low is the so-called
“dot-product attention”
mechanism; there can
be other variants that
involve more complex
attention functions

What we present be-
low is the so-called
“dot-product attention”
mechanism; there can
be other variants that
involve more complex
attention functions

It might help our understanding of the “attention” mechanism to think about a dictio-
nary look-up scenario. Consider a dictionary with keys k mapping to some values v(k).
For example, let k be the name of some foods, such as pizza, apple, sandwich, donut,
chili, burrito, sushi, hamburger, The corresponding values may be information
about the food, such as where it is available, how much it costs, or what its ingredients are.

Suppose that instead of looking up foods by a specific name, we wanted to query by
cuisine, e.g., “mexican” foods. Clearly, we cannot simply look for the word “mexican”
among the dictionary keys, since that word is not a food. What does work is to utilize again
the idea of finding “similarity" between vector embeddings of the query and the keys. The
end result we’d hope to get, is a probability distribution over the foods, p(k|q) indicating
which are best matches for a given query q. With such a distribution, we can look for keys
that are semantically close to the given query.

More concretely, to get such distribution, we follow these steps: First, embed the word
we are interested in (“mexican” in our example) into a so-called query vector, denoted
simply as q ∈ Rdk×1 where dk is the embedding dimension.

Next, suppose our given dictionary has n number of entries/entries, we embed each
one of these into a so-called key vector. In particular, for each of the jth entry in the dictio-
nary, we produce a kj ∈ Rdk×1 key vector, where j = 1, 2, 3, . . . ,n.

We can then obtain the desired probability distribution using a softmax (see Chapter 6)
applied to the inner-product between the key and query:

p(k|q) = softmax
(
[qTk1;qTk2;qTk3; . . . ,qTkn]

)

This vector-based lookup mechanism has come to be known as “attention” in the sense
that p(k|q) is a conditional probability distribution that says how much attention should
be given to the key kj for a given query q.

In other words, the conditional probability distribution p(k|q) gives the “attention weights,”
and the weighted average value

∑

j

p(kj|q) vj (9.3)

is the “attention output.”
The meaning of this weighted average value may be ambiguous when the values are

just words. However, the attention output really becomes meaningful when the value are
projected in some semantic embedding space (and such projection are typically done in
transformers via learned embedding weights).

The same weighted-sum idea generalizes to multiple query, key, and values. In particu-
lar, suppose there are nq number of queries, nk number of keys (and therefore nk number
of values), one can compute an attention matrix

A =

softmax
([
q>1 k1 q>1 k2 · · · q>1 knk

]
/
√
dk
)

softmax
([
q>2 k1 q>2 k2 · · · q>2 knk

]
/
√
dk
)

...
softmax

([
q>nq

k1 q>nq
k2 · · · q>nq

knk

]
/
√
dk
)

 (9.4)

Here, softmaxj is a softmax over the nk-dimensional vector indexed by j, so in Eq. 9.2
this means a softmax computed over keys. In this equation, the normalization by

√
dk is

Last Updated: 11/11/24 10:10:55

MIT 6.390 Fall 2024 81

done to reduce the magnitude of the dot product, which would otherwise grow undesir-
ably large with increasing dk, making it difficult for (overall) training.

Let αij be the entry in ith row and jth column in the attention matrix A. Then αij helps
answer the question "which tokens x(j) help the most with predicting the corresponding
output token y(i)?" The attention output is given by a weighted sum over the values:

y(i) =

n∑

j=1

αijvj

9.2.1 Self Attention

Self-attention is an attention mechanism where the keys, values, and queries are all gener-
ated from the same input.

At a very high level, typical transformer with self-attention layers maps Rn×d −→
Rn×d. In particular, the transformer takes in data (a sequence of tokens) X ∈ Rn×d and
for each token x(i) ∈ Rd×1, it computes (via learned projection, to be discussed in Section
9.3.1), a query qi ∈ Rdq×1, key ki ∈ Rdk×1, and value vi ∈ Rdv×1. In practice, dq = dk = dv
and we often denote all three embedding dimension via a unified dk. Note that dk differs

from d: d is the dimen-
sion of raw input token
∈ Rdq×1

Note that dk differs
from d: d is the dimen-
sion of raw input token
∈ Rdq×1

The self-attention layer then take in these query, key, and values, and compute a self-
attention matrix

A =

softmax
([
q>1 k1 q>1 k2 · · · q>1 kn

]
/
√
dk
)

softmax
([
q>2 k1 q>2 k2 · · · q>2 kn

]
/
√
dk
)

...
softmax

([
q>nk1 q>nk2 · · · q>nkn

]
/
√
dk
)

 (9.5)

Comparing this self-attention matrix with the attention matrix described in Equation
9.2, we notice the only difference lies in the dimensions: since in self-attention, the query,
key, and value all come from the same input, we have nq = nk = nv, and we often denote
all three with a unified n.

The self-attention output is then given by a weighted sum over the values:

y(i) =

n∑

j=1

αijvj

This diagram below shows (only) the middle input token generating a query that is then
combined with the keys computed with all tokens to generate the attention weights via a
softmax. The output of the softmax is then combined with values computed from all to-
kens, to generate the attention output corresponding to the middle input token. Repeating
this for each input token then generates the output.

Last Updated: 11/11/24 10:10:55

MIT 6.390 Fall 2024 82

Study Question: We have five colored tokens in the diagram above (gray, navy blue,
orange, lime green, magenta). Could you read off the diagram the correspondence
between the color and input, query, value, output?

Note that the size of the output is the same as the size of the input. Also, observe that
there is no apparent notion of ordering of the input words in the depicted structure. Posi-
tional information can be added by encoding a number for token (giving say, the token’s
position relative to the start of the sequence) into the vector embedding of each token.
And note that a given query need not pay attention to all other tokens in the input; in this
example, the token used for the query is not used for a key or value.

More generally, a mask may be applied to limit which tokens are used in the attention
computation. For example, one common mask limits the attention computation to tokens
that occur previously in time to the one being used for the query. This prevents the atten-
tion mechanism from “looking ahead” in scenarios where the transformer is being used to
generate one token at a time.

Each self-attention stage is trained to have key, value, and query embeddings that lead
it to pay specific attention to some particular feature of the input. We generally want to
pay attention to many different kinds of features in the input; for example, in translation
one feature might be be the verbs, and another might be objects or subjects. A transformer
utilizes multiple instances of self-attention, each known as an “attention head,” to allow
combinations of attention paid to many different features.

9.3 Transformers

A transformer is the composition of a number of transformer blocks, each of which has
multiple attention heads. At a very high-level, the goal of a transformer block is to output

Last Updated: 11/11/24 10:10:55

MIT 6.390 Fall 2024 83

a really rich, useful representation for each input token, all for the sake of being high-
performant for whatever task the model is trained to learn.

Rather than depicting the transformer graphically, it is worth returning to the beauty of
the underlying equations1.

9.3.1 Learned embedding

For simplicity, we assume the transformer internally uses self-attention. Full general atten-
tion layers work out similarly.

Formally, a transformer block is a parameterized function fθ that maps Rn×d → Rn×d,
where the input data X ∈ Rn×d is often represented as a sequence of n tokens, with each
token x(i) ∈ Rd×1.

Three projection matrices (weights) Wq,Wk,Wv are to be learned, such that, for each
token x(i) ∈ Rd×1, we produce 3 distinct vectors: a query vector qi =WT

qx
(i); a key vector

ki = WT
kx

(i); a value vector vi = WT
v x

(i), all 3 of these vectors Rdk×1 and the learned
weightsWq,Wk,Wv ∈ Rd×dk .

If we stack thesen query, key, value vectors into matrix- form, such thatQ ∈ Rn×dk , K ∈
Rn×dk , and V ∈ Rn×dk , then we can more compactly write out the learned transformation
from the sequence of input token X:

Q = XWq

K = XWk

V = XWv

TheseQ,K,V triple can then be used to produce one (self)attention-layer output. One such
layer is called one "attention head".

One can have more than one "attention head", such that: the queries, keys, and values
are embedded via encoding matrices:

Q(h) = XWh,q (9.6)

K(h) = XWh,k (9.7)

V(h) = XWh,v (9.8)

andWh,q,Wh,k,Wh,v ∈ Rd×dkwhere dk is the size of the key/query embedding space, and
h ∈ {1, · · · ,H} is an index over “attention heads.” for each attention-head

h, we learn one set of
Wh,q,Wh,k,Wh,v.

for each attention-head
h, we learn one set of
Wh,q,Wh,k,Wh,v.

We then perform a weighted sum over all the outputs for each head,

u ′(i) =
H∑

h=1

WT
h,c

n∑

j=1

α
(h)
ij V

(h)
j , (9.9)

where Wh,c ∈ Rdk×d, u ′(i) ∈ Rd×1, the indices i ∈ {1, · · · ,n} and j ∈ {1, · · · ,n} are an
integer index over tokens. V

(h)
j is the dk × 1 value

embedding vector that
corresponds to the input
token xj for attention
head h.

V
(h)
j is the dk × 1 value

embedding vector that
corresponds to the input
token xj for attention
head h.

This is then standardized and combined with x(i) using a LayerNorm function (defined
below) to become

u(i) = LayerNorm
(
x(i) + u ′(i);γ1,β1

)
(9.10)

with parameters γ1,β1 ∈ Rd.

1The presentation here follows the notes by John Thickstun.

Last Updated: 11/11/24 10:10:55

MIT 6.390 Fall 2024 84

To get the final output, we follow the “intermediate output then layer norm" recipe
again. In particular, we first get the transformer block output z ′(i) given by

z ′(i) =WT
2 ReLU

(
WT

1 u
(i)
)

(9.11)

with weights W1 ∈ Rd×m and W2 ∈ Rm×d. This is then standardized and combined with
u(i) to give the final output z(i):

z(i) = LayerNorm
(
u(i) + z ′(i);γ2,β2

)
, (9.12)

with parameters γ2,β2 ∈ Rd. These vectors are then assembled (e.g., through parallel
computation) to produce z ∈ Rn×d.

The LayerNorm function transforms a d-dimensional input zwith parameters γ,β ∈ Rd

into

LayerNorm(z;γ,β) = γ
z− µz
σz

+ β , (9.13)

where µz is the mean and σz the standard deviation of z:

µz =
1
d

d∑

i=1

zi (9.14)

σz =

√√√√ 1
d

d∑

i=1

(zi − µz)2 . (9.15)

Layer normalization is done to improve convergence stability during training.
The model parameters comprise the weight matrices Wh,q,Wh,k,Wh,v,Wh,c,W1,W2

and the LayerNorm parameters γ1,γ2,β1,β2. A transformer is the composition of L trans-
former blocks, each with its own parameters:

fθL
◦ · · · ◦ fθ2 ◦ fθ1(x) ∈ Rn×d . (9.16)

The hyperparameters of this model are d,dk,m,H, and L.

9.3.2 Variations and training

Many variants on this transformer structure exist. For example, the LayerNorm may be
moved to other stages of the neural network. Or a more sophisticated attention function
may be employed instead of the simple dot product used in Eq. 9.2. Transformers may
also be used in pairs, for example, one to process the input and a separate one to gen-
erate the output given the transformed input. Self-attention may also be replaced with
cross-attention, where some input data are used to generate queries and other input data
generate keys and values. Positional encoding and masking are also common, though they
are left implicit in the above equations for simplicity.

How are transformers trained? The number of parameters in θ can be very large; mod-
ern transformer models like GPT4 have tens of billions of parameters or more. A great deal
of data is thus necessary to train such models, else the models may simply overfit small
datasets.

Training large transformer models is thus generally done in two stages. A first “pre-
training” stage employs a very large dataset to train the model to extract patterns. This is
done with unsupervised (or self-supervised) learning and unlabelled data. For example,
the well-known BERT model was pre-trained using sentences with words masked. The

Last Updated: 11/11/24 10:10:55

MIT 6.390 Fall 2024 85

model was trained to predict the masked words. BERT was also trained on sequences of
sentences, where the model was trained to predict whether two sentences are likely to be
contextually close together or not. The pre-training stage is generally very expensive.

The second “fine-tuning” stage trains the model for a specific task, such as classification
or question answering. This training stage can be relatively inexpensive, but it generally
requires labeled data.

Last Updated: 11/11/24 10:10:55

