
CHAPTER 6

Neural Networks

You’ve probably been hearing a lot about “neural networks.” Now that we have several
useful machine-learning concepts (hypothesis classes, classification, regression, gradient
descent, regularization, etc.) we are well equipped to understand neural networks in detail.

This is, in some sense, the “third wave” of neural nets. The basic idea is founded on
the 1943 model of neurons of McCulloch and Pitts and the learning ideas of Hebb. There
was a great deal of excitement, but not a lot of practical success: there were good train-
ing methods (e.g., perceptron) for linear functions, and interesting examples of non-linear
functions, but no good way to train non-linear functions from data. Interest died out for a
while, but was re-kindled in the 1980s when several people came up with a way to train As with many good

ideas in science, the
basic idea for how to
train non-linear neural
networks with gradi-
ent descent was inde-
pendently developed
by more than one re-
searcher.

As with many good
ideas in science, the
basic idea for how to
train non-linear neural
networks with gradi-
ent descent was inde-
pendently developed
by more than one re-
searcher.

neural networks with “back-propagation,” which is a particular style of implementing gra-
dient descent, that we will study here. By the mid-90s, the enthusiasm waned again, be-
cause although we could train non-linear networks, the training tended to be slow and was
plagued by a problem of getting stuck in local optima. Support vector machines (SVMs)
that use regularization of high-dimensional hypotheses by seeking to maximize the mar-
gin, and kernel methods that are an efficient and beautiful way of using feature transfor-
mations to non-linearly transform data into a higher-dimensional space, provided reliable
learning methods with guaranteed convergence and no local optima.

However, during the SVM enthusiasm, several groups kept working on neural net-
works, and their work, in combination with an increase in available data and computation,
has made them rise again. They have become much more reliable and capable, and are
now the method of choice in many applications. There are many, many variations of neu- The number increases

daily, as may be seen on
arxiv.org.

The number increases
daily, as may be seen on
arxiv.org.

ral networks, which we can’t even begin to survey. We will study the core “feed-forward”
networks with “back-propagation” training, and then, in later chapters, address some of
the major advances beyond this core.

We can view neural networks from several different perspectives:

View 1: An application of stochastic gradient descent for classification and regression
with a potentially very rich hypothesis class.

View 2: A brain-inspired network of neuron-like computing elements that learn dis-
tributed representations.

View 3: A method for building applications that make predictions based on huge amounts
of data in very complex domains.

50



MIT 6.390 Fall 2024 51

We will mostly take view 1, with the understanding that the techniques we develop will
enable the applications in view 3. View 2 was a major motivation for the early development
of neural networks, but the techniques we will study do not seem to actually account for Some prominent re-

searchers are, in fact,
working hard to find
analogues of these
methods in the brain.

Some prominent re-
searchers are, in fact,
working hard to find
analogues of these
methods in the brain.

the biological learning processes in brains.

6.1 Basic element

The basic element of a neural network is a “neuron,” pictured schematically below. We will
also sometimes refer to a neuron as a “unit” or “node.”

∑
x1

...

xm

f(·) a

w1

wm

w0

z

input

pre-activation output

activation function

It is a non-linear function of an input vector x ∈ Rm to a single output value a ∈ R. It is Sorry for changing our
notation here. We were
using d as the dimen-
sion of the input, but
we are trying to be con-
sistent here with many
other accounts of neural
networks. It is impossi-
ble to be consistent with
all of them though—
there are many differ-
ent ways of telling this
story.

Sorry for changing our
notation here. We were
using d as the dimen-
sion of the input, but
we are trying to be con-
sistent here with many
other accounts of neural
networks. It is impossi-
ble to be consistent with
all of them though—
there are many differ-
ent ways of telling this
story.

parameterized by a vector of weights (w1, . . . ,wm) ∈ Rm and an offset or threshold w0 ∈ R.

This
should remind you of
our θ and θ0 for linear
models.

This
should remind you of
our θ and θ0 for linear
models.

In order for the neuron to be non-linear, we also specify an activation function f : R → R,
which can be the identity (f(x) = x, in that case the neuron is a linear function of x), but can
also be any other function, though we will only be able to work with it if it is differentiable.

The function represented by the neuron is expressed as:

a = f(z) = f





m∑

j=1

xjwj


+w0


 = f(wTx+w0) .

Before thinking about a whole network, we can consider how to train a single unit.
Given a loss function L(guess, actual) and a dataset {(x(1),y(1)), . . . , (x(n),y(n))}, we can do
(stochastic) gradient descent, adjusting the weights w,w0 to minimize

J(w,w0) =
∑

i

L
(

NN(x(i);w,w0),y(i)
)

,

where NN is the output of our single-unit neural net for a given input.
We have already studied two special cases of the neuron: linear logistic classifiers

(LLCs) with NLL loss and regressors with quadratic loss! The activation function for the
LLC is f(x) = σ(x) and for linear regression it is simply f(x) = x.

Study Question: Just for a single neuron, imagine for some reason, that we decide
to use activation function f(z) = ez and loss function L(guess, actual) = (guess −

actual)2. Derive a gradient descent update for w and w0.

6.2 Networks

Now, we’ll put multiple neurons together into a network. A neural network in general
takes in an input x ∈ Rm and generates an output a ∈ Rn. It is constructed out of multiple

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 52

neurons; the inputs of each neuron might be elements of x and/or outputs of other neurons.
The outputs are generated by n output units.

In this chapter, we will only consider feed-forward networks. In a feed-forward network,
you can think of the network as defining a function-call graph that is acyclic: that is, the
input to a neuron can never depend on that neuron’s output. Data flows one way, from the
inputs to the outputs, and the function computed by the network is just a composition of
the functions computed by the individual neurons.

Although the graph structure of a feed-forward neural network can really be anything
(as long as it satisfies the feed-forward constraint), for simplicity in software and analysis,
we usually organize them into layers. A layer is a group of neurons that are essentially “in
parallel”: their inputs are outputs of neurons in the previous layer, and their outputs are
the input to the neurons in the next layer. We’ll start by describing a single layer, and then
go on to the case of multiple layers.

6.2.1 Single layer

A layer is a set of units that, as we have just described, are not connected to each other. The
layer is called fully connected if, as in the diagram below, all of the inputs (i.e., x1, x2, . . . xm
in this case) are connected to every unit in the layer. A layer has input x ∈ Rm and output
(also known as activation) a ∈ Rn.

∑

∑

∑

...

∑

x1

x2

...

xm

f

f

f

...

f

a1

a2

a3

...

an
W,W0

Since each unit has a vector of weights and a single offset, we can think of the weights of
the whole layer as a matrix, W, and the collection of all the offsets as a vector W0. If we
havem inputs, n units, and n outputs, then

• W is anm× nmatrix,

• W0 is an n× 1 column vector,

• X, the input, is anm× 1 column vector,

• Z =WTX+W0, the pre-activation, is an n× 1 column vector,

• A, the activation, is an n× 1 column vector,

and the output vector is
A = f(Z) = f(WTX+W0) .

The activation function f is applied element-wise to the pre-activation values Z.

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 53

6.2.2 Many layers

A single neural network generally combines multiple layers, most typically by feeding the
outputs of one layer into the inputs of another layer.

We have to start by establishing some nomenclature. We will use l to name a layer, and
letml be the number of inputs to the layer and nl be the number of outputs from the layer.
Then,Wl andWl

0 are of shapeml×nl and nl×1, respectively. Note that the input to layer
l is the output from layer l − 1, so we have ml = nl−1, and as a result Al−1 is of shape
ml × 1, or equivalently nl−1 × 1. Let fl be the activation function of layer l. Then, the It is technically possi-

ble to have different
activation functions
within the same layer,
but, again, for conve-
nience in specification
and implementation,
we generally have the
same activation function
within a layer.

It is technically possi-
ble to have different
activation functions
within the same layer,
but, again, for conve-
nience in specification
and implementation,
we generally have the
same activation function
within a layer.

pre-activation outputs are the nl × 1 vector

Zl =WlTAl−1 +Wl
0

and the activation outputs are simply the nl × 1 vector

Al = fl(Zl) .

Here’s a diagram of a many-layered network, with two blocks for each layer, one rep-
resenting the linear part of the operation and one representing the non-linear activation
function. We will use this structural decomposition to organize our algorithmic thinking
and implementation.

W1

W1
0

f1
W2

W2
0

f2 · · · WL

WL
0

fL
X = A0 Z1 A1 Z2 A2 AL−1 ZL AL

layer 1 layer 2 layer L

6.3 Choices of activation function

There are many possible choices for the activation function. We will start by thinking about
whether it’s really necessary to have an f at all.

What happens if we let f be the identity? Then, in a network with L layers (we’ll leave
outW0 for simplicity, but keeping it wouldn’t change the form of this argument),

AL =WLTAL−1 =WLTWL−1T · · ·W1TX .

So, multiplying out the weight matrices, we find that

AL =WtotalX ,

which is a linear function of X! Having all those layers did not change the representational
capacity of the network: the non-linearity of the activation function is crucial.

Study Question: Convince yourself that any function representable by any number
of linear layers (where f is the identity function) can be represented by a single layer.

Now that we are convinced we need a non-linear activation, let’s examine a few com-
mon choices. These are shown mathematically below, followed by plots of these functions.

Step function:

step(z) =

{
0 if z < 0
1 otherwise

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 54

Rectified linear unit (ReLU):

ReLU(z) =

{
0 if z < 0
z otherwise

= max(0, z)

Sigmoid function: Also known as a logistic function. This can sometimes be interpreted
as probability, because for any value of z the output is in (0, 1):

σ(z) =
1

1 + e−z

Hyperbolic tangent: Always in the range (−1, 1):

tanh(z) =
ez − e−z

ez + e−z

Softmax function: Takes a whole vector Z ∈ Rn and generates as output a vector A ∈
(0, 1)n with the property that

∑n
i=1Ai = 1, which means we can interpret it as a

probability distribution over n items:

softmax(z) =




exp(z1)/
∑
i exp(zi)

...
exp(zn)/

∑
i exp(zi)




−2 −1 1 2
−0.5

0.5

1

1.5

z

step(z)

−2 −1 1 2
−0.5

0.5

1

1.5

z

ReLU(z)

−4 −2 2 4

−1

−0.5

0.5

1

z

σ(z)

−4 −2 2 4

−1

−0.5

0.5

1

z

tanh(z)

The original idea for neural networks involved using the step function as an activation,
but because the derivative of the step function is zero everywhere except at the discontinu-
ity (and there it is undefined), gradient-descent methods won’t be useful in finding a good
setting of the weights, and so we won’t consider them further. They have been replaced, in
a sense, by the sigmoid, ReLU, and tanh activation functions.

Study Question: Consider sigmoid, ReLU, and tanh activations. Which one is most
like a step function? Is there an additional parameter you could add to a sigmoid
that would make it be more like a step function?

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 55

Study Question: What is the derivative of the ReLU function? Are there some val-
ues of the input for which the derivative vanishes?

ReLUs are especially common in internal (“hidden”) layers, sigmoid activations are
common for the output for binary classification, and softmax activations are common for
the output for multi-class classification (see Section 4.3.3 for an explanation).

6.4 Loss functions and activation functions

Different loss functions make different assumptions about the range of values they will get
as input and, as we have seen, different activation functions will produce output values in
different ranges. When you are designing a neural network, it’s important to make these
things fit together well. In particular, we will think about matching loss functions with the
activation function in the last layer, fL. Here is a table of loss functions and activations that
make sense for them:

Loss fL task
squared linear regression

NLL sigmoid binary classification
NLLM softmax multi-class classification

We explored squared loss in Chapter 2 and (NLL and NLLM) in Chapter 4.

6.5 Error back-propagation

We will train neural networks using gradient descent methods. It’s possible to use batch
gradient descent, in which we sum up the gradient over all the points (as in Section 3.2 of
chapter 3) or stochastic gradient descent (SGD), in which we take a small step with respect
to the gradient considering a single point at a time (as in Section 3.4 of Chapter 3).

Our notation is going to get pretty hairy pretty quickly. To keep it as simple as we can,
we’ll focus on computing the contribution of one data point x(i) to the gradient of the loss
with respect to the weights, for SGD; you can simply sum up these gradients over all the
data points if you wish to do batch descent.

So, to do SGD for a training example (x,y), we need to compute ∇WL(NN(x;W),y),
whereW represents all weightsWl,Wl

0 in all the layers l = (1, . . . ,L). This seems terrifying,
but is actually quite easy to do using the chain rule. Remember the chain

rule! If a = f(b) and
b = g(c), so that
a = f(g(c)), then
da
dc

= da
db
· db
dc

=
f ′(b)g ′(c) =
f ′(g(c))g ′(c).

Remember the chain
rule! If a = f(b) and
b = g(c), so that
a = f(g(c)), then
da
dc

= da
db
· db
dc

=
f ′(b)g ′(c) =
f ′(g(c))g ′(c).

Remember that we are always computing the gradient of the loss function with respect
to the weights for a particular value of (x,y). That tells us how much we want to change the
weights, in order to reduce the loss incurred on this particular training example.

6.5.1 First, suppose everything is one-dimensional

To get some intuition for how these derivations work, we’ll first suppose everything in our
neural network is one-dimensional. In particular, we’ll assume there are ml = 1 inputs
and nl = 1 outputs at every layer. So layer l looks like:

al = fl(zl), zl = wlal−1 +wl0.

In the equation above, we’re using the lowercase letters al, zl,wl,al−1,wl0 to emphasize
that all of these quantities are scalars just for the moment. We’ll look at the more general
matrix case below.

To use SGD, then, we want to compute ∂L(NN(x;W),y)/∂wl and ∂L(NN(x;W),y)/∂wl0 Check your understand-
ing: why do we need
exactly these quantities
for SGD?

Check your understand-
ing: why do we need
exactly these quantities
for SGD?Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 56

for each layer l and each data point (x,y). Below we’ll write “loss” as an abbreviation for
L(NN(x;W),y). Then our first quantity of interest is ∂loss/∂wl. The chain rule gives us
the following. First, let’s look at the case l = L:

∂loss
∂wL

=
∂loss
∂aL

· ∂a
L

∂zL
· ∂z

L

∂wL

=
∂loss
∂aL

· (fL) ′(zL) · aL−1.

Now we can look at the case of general l:

∂loss
∂wl

=
∂loss
∂aL

· ∂a
L

∂zL
· ∂z

L

∂aL−1 ·
∂aL−1

∂zL−1 · · ·
∂zl+1

∂al
· ∂a

l

∂zl
· ∂z

l

∂wl

=
∂loss
∂aL

· (fL) ′(zL) ·wL · (fL−1) ′(zL−1) · · · ·wl+1 · (fl) ′(zl) · al−1

=
∂loss
∂zl

· al−1.

Note that every multiplication above is scalar multiplication because every term in ev-
ery product above is a scalar. And though we solved for all the other terms in the product,
we haven’t solved for ∂loss/∂aL because the derivative will depend on which loss function
you choose. Once you choose a loss function though, you should be able to compute this
derivative.

Study Question: Suppose you choose squared loss. What is ∂loss/∂aL?

Study Question: Check the derivations above yourself. You should use the chain
rule and also solve for the individual derivatives that arise in the chain rule.

Study Question: Check that the the final layer (l = L) case is a special case of the
general layer l case above.

Study Question: Derive ∂L(NN(x;W),y)/∂wl0 for yourself, for both the final layer
(l = L) and general l.

Study Question: Does the L = 1 case remind you of anything from earlier in this
course?

Study Question: Write out the full SGD algorithm for this neural network.

It’s pretty typical to run the chain rule from left to right like we did above. But, for
where we’re going next, it will be useful to notice that it’s completely equivalent to write it
in the other direction. So we can rewrite our result from above as follows:

∂loss
∂wl

= al−1 · ∂loss
∂zl

(6.1)

∂loss
∂zl

=
∂al

∂zl
· ∂z

l+1

∂al
· · · ∂a

L−1

∂zL−1 ·
∂zL

∂aL−1 ·
∂aL

∂zL
· ∂loss
∂aL

(6.2)

=
∂al

∂zl
·wl+1 · · · ∂a

L−1

∂zL−1 ·w
L · ∂a

L

∂zL
· ∂loss
∂aL

. (6.3)

6.5.2 The general case

Next we’re going to do everything that we did above, but this time we’ll allow any number
of inputs ml and outputs nl at every layer. First, we’ll tell you the results that correspond
to our derivations above. Then we’ll talk about why they make sense. And finally we’ll
derive them carefully.

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 57

OK, let’s start with the results! Again, below we’ll be using “loss” as an abbreviation
for L(NN(x;W),y). Then,

∂loss
∂Wl︸ ︷︷ ︸
ml×nl

= Al−1
︸ ︷︷ ︸
ml×1

(
∂loss
∂Zl

)T

︸ ︷︷ ︸
1×nl

(6.4)

∂loss
∂Zl

=
∂Al

∂Zl
· ∂Z

l+1

∂Al
· · · · ∂A

L−1

∂ZL−1 ·
∂ZL

∂AL−1 ·
∂AL

∂ZL
· ∂loss
∂AL

(6.5)

=
∂Al

∂Zl
·Wl+1 · · · · ∂A

L−1

∂ZL−1 ·W
L · ∂A

L

∂ZL
· ∂loss
∂AL

. (6.6)

First, compare each equation to its one-dimensional counterpart, and make sure you
see the similarities. That is, compare the general weight derivatives in Eq. 6.4 to the one-
dimensional case in Eq. 6.1. Compare the intermediate derivative of loss with respect to the
pre-activations Zl in Eq. 6.5 to the one-dimensional case in Eq. 6.2. And finally compare the
version where we’ve substituted in some of the derivatives in Eq. 6.6 to Eq. 6.3. Hopefully
you see how the forms are very analogous. But in the matrix case, we now have to be
careful about the matrix dimensions. We’ll check these matrix dimensions below.

Let’s start by talking through each of the terms in the matrix version of these equations.
Recall that loss is a scalar, and Wl is a matrix of size ml × nl. You can read about the
conventions in the course for derivatives starting in this chapter in Appendix A. By these
conventions (not the only possible conventions!), we have that ∂loss/∂Wl will be a matrix
of size ml × nl whose (i, j) entry is the scalar ∂loss/∂Wl

i,j. In some sense, we’re just doing
a bunch of traditional scalar derivatives, and the matrix notation lets us write them all
simultaneously and succinctly. In particular, for SGD, we need to find the derivative of the
loss with respect to every scalar component of the weights because these are our model’s
parameters and therefore are the things we want to update in SGD.

The next quantity we see in Eq. 6.4 is Al−1, which we recall has size ml × 1 (or equiva-
lently nl−1 × 1 since it represents the outputs of the l− 1 layer). Finally, we see ∂loss/∂Zl.
Again, loss is a scalar, and Zl is a nl × 1 vector. So by the conventions in Appendix A, we
have that ∂loss/∂Zl has size nl × 1. The transpose then has size 1 × nl. Now you should
be able to check that the dimensions all make sense in Eq. 6.4; in particular, you can check
that inner dimensions agree in the matrix multiplication and that, after the multiplication,
we should be left with something that has the dimensions on the lefthand side.

Now let’s look at Eq. 6.6. We’re computing ∂loss/∂Zl so that we can use it in Eq. 6.4.
The weights are familiar. The one part that remains is terms of the form ∂Al/∂Zl. Checking
out Appendix A, we see that this term should be a matrix of size nl × nl since Al and Zl

both have size nl × 1. The (i, j) entry of this matrix is ∂Alj/∂Z
l
i. This scalar derivative is

something that you can compute when you know your activation function. If you’re not
using a softmax activation function, Alj typically is a function only of Zlj , which means that
∂Alj/∂Z

l
i should equal 0 whenever i 6= j, and that ∂Alj/∂Z

l
j = (fl) ′(Zlj).

Study Question: Compute the dimensions of every term in Eqs. 6.5 and 6.6 using
Appendix A. After you’ve done that, check that all the matrix multiplications work;
that is, check that the inner dimensions agree and that the lefthand side and right-
hand side of these equations have the same dimensions.

Study Question: If I use the identity activation function, what is ∂Alj/∂Z
l
j for any j?

What is the full matrix ∂Al/∂Zl?

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 58

6.5.3 Derivations for the general case

You can use everything above without deriving it yourself. But if you want to find the
gradients of loss with respect to Wl

0 (which we need for SGD!), then you’ll want to know
how to actually do these derivations. So next we’ll work out the derivations.

The key trick is to just break every equation down into its scalar meaning. For instance,
the (i, j) element of ∂loss/∂Wl is ∂loss/∂Wl

i,j. If you think about it for a moment (and it
might help to go back to the one-dimensional case), the loss is a function of the elements
of Zl, and the elements of Zl are a function of the Wl

i,j. There are nl elements of Zl, so we
can use the chain rule to write

∂loss
∂Wl

i,j
=

nl∑

k=1

∂loss
∂Zlk

∂Zlk
∂Wl

i,j
. (6.7)

To figure this out, let’s remember that Zl = (Wl)>Al−1 +Wl
0 . We can write one element

of the Zl vector, then, as Zlb =
∑ml

a=1W
l
a,bA

l−1
a + (Wl

0)b. It follows that ∂Zlk/∂W
l
i,j will be

zero except when k = j (check you agree!). So we can rewrite Eq. 6.7 as

∂loss
∂Wl

i,j
=
∂loss
∂Zlj

∂Zlj

∂Wl
i,j

=
∂loss
∂Zlj

Al−1
i . (6.8)

Finally, then, we match entries of the matrices on both sides of the equation above to re-
cover Eq. 6.4.

Study Question: Check that Eq. 6.8 and Eq. 6.4 say the same thing.

Study Question: Convince yourself that ∂Zl/∂Al−1 = Wl by comparing the entries
of the matrices on both sides on the equality sign.

Study Question: Convince yourself that Eq. 6.5 is true.

Study Question: Apply the same reasoning to find the gradients of loss with respect
to Wl

0 .

6.5.4 Reflecting on backpropagation

This general process of computing the gradients of the loss with respect to the weights is
called error back-propagation. The idea is that we first do a forward pass to compute all the a We could call this

“blame propagation”.
Think of loss as how
mad we are about the
prediction just made.
Then ∂loss/∂AL is how
much we blame AL
for the loss. The last
module has to take in
∂loss/∂AL and com-
pute ∂loss/∂ZL, which
is how much we blame
ZL for the loss. The
next module (work-
ing backwards) takes
in ∂loss/∂ZL and com-
putes ∂loss/∂AL−1. So
every module is accept-
ing its blame for the
loss, computing how
much of it to allocate to
each of its inputs, and
passing the blame back
to them.

We could call this
“blame propagation”.
Think of loss as how
mad we are about the
prediction just made.
Then ∂loss/∂AL is how
much we blame AL
for the loss. The last
module has to take in
∂loss/∂AL and com-
pute ∂loss/∂ZL, which
is how much we blame
ZL for the loss. The
next module (work-
ing backwards) takes
in ∂loss/∂ZL and com-
putes ∂loss/∂AL−1. So
every module is accept-
ing its blame for the
loss, computing how
much of it to allocate to
each of its inputs, and
passing the blame back
to them.

and z values at all the layers, and finally the actual loss. Then, we can work backward and
compute the gradient of the loss with respect to the weights in each layer, starting at layer
L and going back to layer 1.

W1

W1
0

f1
W2

W2
0

f2 · · · WL

WL
0

fL Loss
X = A0 Z1 A1 Z2 A2 AL−1 ZL AL

y

∂loss
∂AL

∂loss
∂ZL

∂loss
∂AL−1

∂loss
∂A2

∂loss
∂Z2

∂loss
∂A1

∂loss
∂Z1

If we view our neural network as a sequential composition of modules (in our work
so far, it has been an alternation between a linear transformation with a weight matrix,
and a component-wise application of a non-linear activation function), then we can define
a simple API for a module that will let us compute the forward and backward passes, as

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 59

well as do the necessary weight updates for gradient descent. Each module has to provide
the following “methods.” We are already using letters a, x,y, z with particular meanings,
so here we will use u as the vector input to the module and v as the vector output:

• forward: u→ v

• backward: u, v,∂L/∂v→ ∂L/∂u

• weight grad: u,∂L/∂v→ ∂L/∂W only needed for modules that have weightsW

In homework we will ask you to implement these modules for neural network components,
and then use them to construct a network and train it as described in the next section.

6.6 Training

Here we go! Here’s how to do stochastic gradient descent training on a feed-forward neural
network. After this pseudo-code, we motivate the choice of initialization in lines 2 and 3.
The actual computation of the gradient values (e.g., ∂loss/∂AL) is not directly defined in
this code, because we want to make the structure of the computation clear.

Study Question: What is ∂Zl/∂Wl?

Study Question: Which terms in the code below depend on fL?

SGD-NEURAL-NET(Dn, T ,L, (m1, . . . ,mL), (f1, . . . , fL), Loss)

1 for l = 1 to L
2 Wl

ij ∼ Gaussian(0, 1/ml)
3 Wl

0j ∼ Gaussian(0, 1)
4 for t = 1 to T
5 i = random sample from {1, . . . ,n}
6 A0 = x(i)

7 // forward pass to compute the output AL

8 for l = 1 to L
9 Zl = WlTAl−1 +Wl

0
10 Al = fl(Zl)

11 loss = Loss(AL,y(i))
12 for l = L to 1:
13 // error back-propagation
14 ∂loss/∂Al = if l < L then ∂Zl+1/∂Al · ∂loss/∂Zl+1 else ∂loss/∂AL

15 ∂loss/∂Zl = ∂Al/∂Zl · ∂loss/∂Al

16 // compute gradient with respect to weights
17 ∂loss/∂Wl = Al−1 ·

(
∂loss/∂Zl

)T
18 ∂loss/∂Wl

0 = ∂loss/∂Zl

19 // stochastic gradient descent update
20 Wl =Wl − η(t) · ∂loss/∂Wl

21 Wl
0 =Wl

0 − η(t) · ∂loss/∂Wl
0

Initializing W is important; if you do it badly there is a good chance the neural net-
work training won’t work well. First, it is important to initialize the weights to random
values. We want different parts of the network to tend to “address” different aspects of
the problem; if they all start at the same weights, the symmetry will often keep the values
from moving in useful directions. Second, many of our activation functions have (near)

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 60

zero slope when the pre-activation z values have large magnitude, so we generally want to
keep the initial weights small so we will be in a situation where the gradients are non-zero,
so that gradient descent will have some useful signal about which way to go.

One good general-purpose strategy is to choose each weight at random from a Gaussian
(normal) distribution with mean 0 and standard deviation (1/m) where m is the number
of inputs to the unit.

Study Question: If the input x to this unit is a vector of 1’s, what would the ex-
pected pre-activation z value be with these initial weights?

We write this choice (where ∼ means “is drawn randomly from the distribution”) as
Wl
ij ∼ Gaussian

(
0, 1
ml

)
. It will often turn out (especially for fancier activations and loss

functions) that computing ∂loss
∂ZL is easier than computing ∂loss

∂AL and ∂AL

∂ZL . So, we may instead
ask for an implementation of a loss function to provide a backward method that computes
∂loss/∂ZL directly.

6.7 Optimizing neural network parameters

Because neural networks are just parametric functions, we can optimize loss with respect to
the parameters using standard gradient-descent software, but we can take advantage of the
structure of the loss function and the hypothesis class to improve optimization. As we have
seen, the modular function-composition structure of a neural network hypothesis makes it
easy to organize the computation of the gradient. As we have also seen earlier, the structure
of the loss function as a sum over terms, one per training data point, allows us to consider
stochastic gradient methods. In this section we’ll consider some alternative strategies for
organizing training, and also for making it easier to handle the step-size parameter.

6.7.1 Batches

Assume that we have an objective of the form

J(W) =

n∑

i=1

L(h(x(i);W),y(i)) ,

where h is the function computed by a neural network, and W stands for all the weight
matrices and vectors in the network.

Recall that, when we perform batch (or the vanilla) gradient descent, we use the update
rule

Wt =Wt−1 − η∇WJ(Wt−1) ,

which is equivalent to

Wt =Wt−1 − η

n∑

i=1

∇WL(h(x(i);Wt−1),y(i)) .

So, we sum up the gradient of loss at each training point, with respect toW, and then take
a step in the negative direction of the gradient.

In stochastic gradient descent, we repeatedly pick a point (x(i),y(i)) at random from the
data set, and execute a weight update on that point alone:

Wt =Wt−1 − η∇WL(h(x(i);Wt−1),y(i)) .

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 61

As long as we pick points uniformly at random from the data set, and decrease η at an
appropriate rate, we are guaranteed, with high probability, to converge to at least a local
optimum.

These two methods have offsetting virtues. The batch method takes steps in the exact
gradient direction but requires a lot of computation before even a single step can be taken,
especially if the data set is large. The stochastic method begins moving right away, and can
sometimes make very good progress before looking at even a substantial fraction of the
whole data set, but if there is a lot of variability in the data, it might require a very small η
to effectively average over the individual steps moving in “competing” directions.

An effective strategy is to “average” between batch and stochastic gradient descent by
using mini-batches. For a mini-batch of size K, we select K distinct data points uniformly
at random from the data set and do the update based just on their contributions to the
gradient

Wt =Wt−1 − η

K∑

i=1

∇WL(h(x(i);Wt−1),y(i)) .

Most neural network software packages are set up to do mini-batches.

Study Question: For what value of K is mini-batch gradient descent equivalent to
stochastic gradient descent? To batch gradient descent?

Picking K unique data points at random from a large data-set is potentially computa-
tionally difficult. An alternative strategy, if you have an efficient procedure for randomly
shuffling the data set (or randomly shuffling a list of indices into the data set) is to operate
in a loop, roughly as follows:

MINI-BATCH-SGD(NN, data, K)

1 n = length(data)
2 while not done:
3 RANDOM-SHUFFLE(data)
4 for i = 1 to dn/Ke
5 BATCH-GRADIENT-UPDATE(NN, data[(i− 1)K : iK])

See note on the ceiling1 function, for the case when n/K is not an integer.

6.7.2 Adaptive step-size

Picking a value for η is difficult and time-consuming. If it’s too small, then convergence is
slow and if it’s too large, then we risk divergence or slow convergence due to oscillation.
This problem is even more pronounced in stochastic or mini-batch mode, because we know
we need to decrease the step size for the formal guarantees to hold.

It’s also true that, within a single neural network, we may well want to have differ-
ent step sizes. As our networks become deep (with increasing numbers of layers) we can
find that magnitude of the gradient of the loss with respect the weights in the last layer,
∂loss/∂WL, may be substantially different from the gradient of the loss with respect to the
weights in the first layer ∂loss/∂W1. If you look carefully at Eq. 6.6, you can see that the
output gradient is multiplied by all the weight matrices of the network and is “fed back”
through all the derivatives of all the activation functions. This can lead to a problem of
exploding or vanishing gradients, in which the back-propagated gradient is much too big or
small to be used in an update rule with the same step size.

1 In line 4 of the algorithm above, d·e is known as the ceiling function; it returns the smallest integer greater
than or equal to its input. E.g., d2.5e = 3 and d3e = 3.

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 62

So, we can consider having an independent step-size parameter for each weight, and up-
dating it based on a local view of how the gradient updates have been going.Some common This section is very

strongly influenced
by Sebastian Ruder’s
excellent blog posts on
the topic: ruder.io/

optimizing-gradient-descent

This section is very
strongly influenced
by Sebastian Ruder’s
excellent blog posts on
the topic: ruder.io/

optimizing-gradient-descent

strategies for this include momentum (“averaging” recent gradient updates), Adadelta (take
larger steps in parts of the space where J(W) is nearly flat), and Adam (which combines
these two previous ideas). Details of these approaches are described in Appendix B.0.1.

6.8 Regularization

So far, we have only considered optimizing loss on the training data as our objective for
neural network training. But, as we have discussed before, there is a risk of overfitting if
we do this. The pragmatic fact is that, in current deep neural networks, which tend to be
very large and to be trained with a large amount of data, overfitting is not a huge problem.
This runs counter to our current theoretical understanding and the study of this question
is a hot area of research. Nonetheless, there are several strategies for regularizing a neural
network, and they can sometimes be important.

6.8.1 Methods related to ridge regression

One group of strategies can, interestingly, be shown to have similar effects to each other:
early stopping, weight decay, and adding noise to the training data. Result is due to

Bishop, described
in his textbook and
here doi.org/10.1162/

neco.1995.7.1.108.

Result is due to
Bishop, described
in his textbook and
here doi.org/10.1162/

neco.1995.7.1.108.

Early stopping is the easiest to implement and is in fairly common use. The idea is
to train on your training set, but at every epoch (a pass through the whole training set, or
possibly more frequently), evaluate the loss of the current W on a validation set. It will
generally be the case that the loss on the training set goes down fairly consistently with
each iteration, the loss on the validation set will initially decrease, but then begin to increase
again. Once you see that the validation loss is systematically increasing, you can stop
training and return the weights that had the lowest validation error.

Another common strategy is to simply penalize the norm of all the weights, as we did in
ridge regression. This method is known as weight decay, because when we take the gradient
of the objective

J(W) =

n∑

i=1

L(NN(x(i)),y(i);W) + λ‖W‖2

we end up with an update of the form

Wt =Wt−1 − η
((
∇WL(NN(x(i)),y(i);Wt−1)

)
+ 2λWt−1

)

=Wt−1(1 − 2λη) − η
(
∇WL(NN(x(i)),y(i);Wt−1)

)
.

This rule has the form of first “decaying” Wt−1 by a factor of (1 − 2λη) and then taking a
gradient step.

Finally, the same effect can be achieved by perturbing the x(i) values of the training data
by adding a small amount of zero-mean normally distributed noise before each gradient
computation. It makes intuitive sense that it would be more difficult for the network to
overfit to particular training data if they are changed slightly on each training step.

6.8.2 Dropout

Dropout is a regularization method that was designed to work with deep neural networks.
The idea behind it is, rather than perturbing the data every time we train, we’ll perturb the
network! We’ll do this by randomly, on each training step, selecting a set of units in each
layer and prohibiting them from participating. Thus, all of the units will have to take a

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 63

kind of “collective” responsibility for getting the answer right, and will not be able to rely
on any small subset of the weights to do all the necessary computation. This tends also to
make the network more robust to data perturbations.

During the training phase, for each training example, for each unit, randomly with
probability p temporarily set a`j = 0. There will be no contribution to the output and no
gradient update for the associated unit.

Study Question: Be sure you understand why, when using SGD, setting an activa-
tion value to 0 will cause that unit’s weights not to be updated on that iteration.

When we are done training and want to use the network to make predictions, we mul-
tiply all weights by p to achieve the same average activation levels.

Implementing dropout is easy! In the forward pass during training, we let

a` = f(z`) ∗ d`

where ∗ denotes component-wise product and d` is a vector of 0’s and 1’s drawn randomly
with probability p. The backwards pass depends on a`, so we do not need to make any
further changes to the algorithm.

It is common to set p to 0.5, but this is something one might experiment with to get
good results on your problem and data.

6.8.3 Batch normalization

Another strategy that seems to help with regularization and robustness in training is batch
normalization. It was originally developed to address a problem of covariate shift: that is, if For more details see

arxiv.org/abs/1502.03167.
For more details see
arxiv.org/abs/1502.03167.you consider the second layer of a two-layer neural network, the distribution of its input

values is changing over time as the first layer’s weights change. Learning when the input
distribution is changing is extra difficult: you have to change your weights to improve your
predictions, but also just to compensate for a change in your inputs (imagine, for instance,
that the magnitude of the inputs to your layer is increasing over time—then your weights
will have to decrease, just to keep your predictions the same).

So, when training with mini-batches, the idea is to standardize the input values for each
mini-batch, just in the way that we did it in Section 5.3.3 of Chapter 5, subtracting off the
mean and dividing by the standard deviation of each input dimension. This means that the
scale of the inputs to each layer remains the same, no matter how the weights in previous
layers change. However, this somewhat complicates matters, because the computation of
the weight updates will need to take into account that we are performing this transforma-
tion. In the modular view, batch normalization can be seen as a module that is applied to
zl, interposed after the product withWl and before input to fl. We follow here the sug-

gestion from the origi-
nal paper of applying
batch normalization
before the activation
function. Since then it
has been shown that, in
some cases, applying it
after works a bit better.
But there aren’t any def-
inite findings on which
works better and when.

We follow here the sug-
gestion from the origi-
nal paper of applying
batch normalization
before the activation
function. Since then it
has been shown that, in
some cases, applying it
after works a bit better.
But there aren’t any def-
inite findings on which
works better and when.

Although batch-norm was originally justified based on the problem of covariate shift,
it’s not clear that that is actually why it seems to improve performance. Batch normaliza-
tion can also end up having a regularizing effect for similar reasons that adding noise and
dropout do: each mini-batch of data ends up being mildly perturbed, which prevents the
network from exploiting very particular values of the data points. For those interested, the
equations for batch normalization, including a derivation of the forward pass and back-
ward pass, are described in Appendix B.0.2.

Last Updated: 11/11/24 10:10:55


