
CHAPTER 8

Convolutional Neural Networks

So far, we have studied what are called fully connected neural networks, in which all of the
units at one layer are connected to all of the units in the next layer. This is a good arrange-
ment when we don’t know anything about what kind of mapping from inputs to outputs
we will be asking the network to learn to approximate. But if we do know something about
our problem, it is better to build it into the structure of our neural network. Doing so can
save computation time and significantly diminish the amount of training data required to
arrive at a solution that generalizes robustly.

One very important application domain of neural networks, where the methods have
achieved an enormous amount of success in recent years, is signal processing. Signals
might be spatial (in two-dimensional camera images or three-dimensional depth or CAT
scans) or temporal (speech or music). If we know that we are addressing a signal-processing
problem, we can take advantage of invariant properties of that problem. In this chapter, we
will focus on two-dimensional spatial problems (images) but use one-dimensional ones as
a simple example. In a later chapter, we will address temporal problems.

Imagine that you are given the problem of designing and training a neural network that
takes an image as input, and outputs a classification, which is positive if the image contains
a cat and negative if it does not. An image is described as a two-dimensional array of pixels, A pixel is a “picture ele-

ment.”
A pixel is a “picture ele-
ment.”each of which may be represented by three integer values, encoding intensity levels in red,

green, and blue color channels.
There are two important pieces of prior structural knowledge we can bring to bear on

this problem:

• Spatial locality: The set of pixels we will have to take into consideration to find a cat
will be near one another in the image. So, for example, we

won’t have to consider
some combination of
pixels in the four cor-
ners of the image, in
order to see if they en-
code cat-ness.

So, for example, we
won’t have to consider
some combination of
pixels in the four cor-
ners of the image, in
order to see if they en-
code cat-ness.

• Translation invariance: The pattern of pixels that characterizes a cat is the same no
matter where in the image the cat occurs.

Cats don’t look differ-
ent if they’re on the left
or the right side of the
image.

Cats don’t look differ-
ent if they’re on the left
or the right side of the
image.

We will design neural network structures that take advantage of these properties.

71



MIT 6.390 Fall 2024 72

8.1 Filters

We begin by discussing image filters. An image filter is a function that takes in a local spatial Unfortunately in AI/M-
L/CS/Math, the word
“filter” gets used in
many ways: in addition
to the one we describe
here, it can describe a
temporal process (in
fact, our moving aver-
ages are a kind of filter)
and even a somewhat
esoteric algebraic struc-
ture.

Unfortunately in AI/M-
L/CS/Math, the word
“filter” gets used in
many ways: in addition
to the one we describe
here, it can describe a
temporal process (in
fact, our moving aver-
ages are a kind of filter)
and even a somewhat
esoteric algebraic struc-
ture.

neighborhood of pixel values and detects the presence of some pattern in that data.
Let’s consider a very simple case to start, in which we have a 1-dimensional binary

“image” and a filter F of size two. The filter is a vector of two numbers, which we will
move along the image, taking the dot product between the filter values and the image
values at each step, and aggregating the outputs to produce a new image.

Let X be the original image, of size d; then pixel i of the the output image is specified
by

Yi = F · (Xi−1,Xi) .

To ensure that the output image is also of dimension d, we will generally “pad” the input
image with 0 values if we need to access pixels that are beyond the bounds of the input
image. This process of applying the filter to the image to create a new image is called
“convolution.” And filters are also

sometimes called con-
volutional kernels.

And filters are also
sometimes called con-
volutional kernels.

If you are already familiar with what a convolution is, you might notice that this def-
inition corresponds to what is often called a correlation and not to a convolution. In-
deed, correlation and convolution refer to different operations in signal processing. How-
ever, in the neural networks literature, most libraries implement the correlation (as de-
scribed in this chapter) but call it convolution. The distinction is not significant; in prin-
ciple, if convolution is required to solve the problem, the network could learn the nec-
essary weights. For a discussion of the difference between convolution and correlation
and the conventions used in the literature you can read Section 9.1 in this excellent book:
https://www.deeplearningbook.org.

Here is a concrete example. Let the filter F1 = (−1,+1). Then given the image in the first
line below, we can convolve it with filter F1 to obtain the second image. You can think of
this filter as a detector for “left edges” in the original image—to see this, look at the places
where there is a 1 in the output image, and see what pattern exists at that position in the
input image. Another interesting filter is F2 = (−1,+1,−1). The third image (the last line
below) shows the result of convolving the first image with F2, where we see that the output
pixel i corresponds to when the center of F2 is aligned at input pixel i.

Study Question: Convince yourself that filter F2 can be understood as a detector for
isolated positive pixels in the binary image.

0 0 1 1 1 0 1 0 0 0Image:

F1: -1 +1

0 0 1 0 0 -1 1 -1 0 0After convolution (with F1):

0 -1 0 -1 0 -2 1 -1 0 0After convolution (with F2):

F2 -1 +1 -1

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 73

Two-dimensional versions of filters like these are thought to be found in the visual
cortex of all mammalian brains. Similar patterns arise from statistical analysis of natural
images. Computer vision people used to spend a lot of time hand-designing filter banks. A
filter bank is a set of sets of filters, arranged as shown in the diagram below.

Image

All of the filters in the first group are applied to the original image; if there are k such
filters, then the result is k new images, which are called channels. Now imagine stacking
all these new images up so that we have a cube of data, indexed by the original row and
column indices of the image, as well as by the channel. The next set of filters in the filter
bank will generally be three-dimensional: each one will be applied to a sub-range of the row
and column indices of the image and to all of the channels.

These 3D chunks of data are called tensors. The algebra of tensors is fun, and a lot like There are now many
useful neural-network
software packages, such
as TensorFlow and Py-
Torch that make opera-
tions on tensors easy.

There are now many
useful neural-network
software packages, such
as TensorFlow and Py-
Torch that make opera-
tions on tensors easy.

matrix algebra, but we won’t go into it in any detail.
Here is a more complex example of two-dimensional filtering. We have two 3× 3 filters

in the first layer, f1 and f2. You can think of each one as “looking” for three pixels in a
row, f1 vertically and f2 horizontally. Assuming our input image is n × n, then the result
of filtering with these two filters is an n × n × 2 tensor. Now we apply a tensor filter
(hard to draw!) that “looks for” a combination of two horizontal and two vertical bars
(now represented by individual pixels in the two channels), resulting in a single final n×n
image. When we have a color

image as input, we treat
it as having three chan-
nels, and hence as an
n× n× 3 tensor.

When we have a color
image as input, we treat
it as having three chan-
nels, and hence as an
n× n× 3 tensor.

f2

f1

tensor
filter

We are going to design neural networks that have this structure. Each “bank” of the
filter bank will correspond to a neural-network layer. The numbers in the individual filters
will be the “weights” (plus a single additive bias or offset value for each filter) of the net-
work, that we will train using gradient descent. What makes this interesting and powerful
(and somewhat confusing at first) is that the same weights are used many many times in
the computation of each layer. This weight sharing means that we can express a transforma-

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 74

tion on a large image with relatively few parameters; it also means we’ll have to take care
in figuring out exactly how to train it!

We will define a filter layer l formally with: For simplicity, we are
assuming that all im-
ages and filters are
square (having the same
number of rows and
columns). That is in no
way necessary, but is
usually fine and def-
initely simplifies our
notation.

For simplicity, we are
assuming that all im-
ages and filters are
square (having the same
number of rows and
columns). That is in no
way necessary, but is
usually fine and def-
initely simplifies our
notation.

• number of filtersml;

• size of one filter is kl × kl ×ml−1 plus 1 bias value (for this one filter);

• stride sl is the spacing at which we apply the filter to the image; in all of our examples
so far, we have used a stride of 1, but if we were to “skip” and apply the filter only at
odd-numbered indices of the image, then it would have a stride of two (and produce
a resulting image of half the size);

• input tensor size nl−1 × nl−1 ×ml−1

• padding: pl is how many extra pixels – typically with value 0 – we add around the
edges of the input. For an input of size nl−1 × nl−1 ×ml−1, our new effective input
size with padding becomes (nl−1 + 2 · pl)× (nl−1 + 2 · pl)×ml−1.

This layer will produce an output tensor of size nl ×nl ×ml, where nl = d(nl−1 + 2 · pl −
(kl− 1))/sle.1 The weights are the values defining the filter: there will beml different kl×
kl×ml−1 tensors of weight values; plus each filter may have a bias term, which means there
is one more weight value per filter. A filter with a bias operates just like the filter examples
above, except we add the bias to the output. For instance, if we incorporated a bias term
of 0.5 into the filter F2 above, the output would be (−0.5, 0.5,−0.5, 0.5,−1.5, 1.5,−0.5, 0.5)
instead of (−1, 0,−1, 0,−2, 1,−1, 0).

This may seem complicated, but we get a rich class of mappings that exploit image
structure and have many fewer weights than a fully connected layer would.

Study Question: How many weights are in a convolutional layer specified as
above?

Study Question: If we used a fully-connected layer with the same size inputs and
outputs, how many weights would it have?

8.2 Max pooling

It is typical to structure filter banks into a pyramid, in which the image sizes get smaller in Both in engineering and
in nature
Both in engineering and
in naturesuccessive layers of processing. The idea is that we find local patterns, like bits of edges

in the early layers, and then look for patterns in those patterns, etc. This means that, ef-
fectively, we are looking for patterns in larger pieces of the image as we apply successive
filters. Having a stride greater than one makes the images smaller, but does not necessarily
aggregate information over that spatial range.

Another common layer type, which accomplishes this aggregation, is max pooling. A
max pooling layer operates like a filter, but has no weights. You can think of it as purely
functional, like a ReLU in a fully connected network. It has a filter size, as in a filter layer, but
simply returns the maximum value in its field. Usually, we apply max pooling with the We sometimes use the

term receptive field or
just field to mean the
area of an input image
that a filter is being ap-
plied to.

We sometimes use the
term receptive field or
just field to mean the
area of an input image
that a filter is being ap-
plied to.

following traits:

• stride > 1, so that the resulting image is smaller than the input image; and

• k > stride, so that the whole image is covered.

1 Recall that d·e is the ceiling function; it returns the smallest integer greater than or equal to its input. E.g.,
d2.5e = 3 and d3e = 3.

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 75

As a result of applying a max pooling layer, we don’t keep track of the precise location of a
pattern. This helps our filters to learn to recognize patterns independent of their location.

Consider a max pooling layer where both the strides and k are set to be 2. This would
map a 64× 64× 3 image to a 32× 32× 3 image. Note that max pooling layers do not have
additional bias or offset values.

Study Question: Maximilian Poole thinks it would be a good idea to add two max
pooling layers of size k, one right after the other, to their network. What single layer
would be equivalent?

One potential concern about max-pooling layers is that they actually don’t completely
preserve translation invariance. If you do max-pooling with a stride other than 1 (or just
pool over the whole image size), then shifting the pattern you are hoping to detect within
the image by a small amount can change the output of the max-pooling layer substan-
tially, just because there are discontinuities induced by the way the max-pooling window
matches up with its input image. Here is an interesting paper that illustrates this phe- https://arxiv.org/

pdf/1904.11486.pdf
https://arxiv.org/
pdf/1904.11486.pdfnomenon clearly and suggests that one should first do max-pooling with a stride of 1, then

do “downsampling” by averaging over a window of outputs.

8.3 Typical architecture

Here is the form of a typical convolutional network:

The “depth” dimension in the layers shown as cuboids corresponds to the number of chan-
nels in the output tensor. (Figure source: https://www.mathworks.com/solutions/deep-
learning/convolutional-neural-network.html)

At the end of each filter layer, we typically apply a ReLU activation function. There
may be multiple filter plus ReLU layers. Then we have a max pooling layer. Then we have
some more filter + ReLU layers. Then we have max pooling again. Once the output is
down to a relatively small size, there is typically a last fully-connected layer, leading into
an activation function such as softmax that produces the final output. The exact design of
these structures is an art—there is not currently any clear theoretical (or even systematic
empirical) understanding of how these various design choices affect overall performance
of the network.

The critical point for us is that this is all just a big neural network, which takes an input
and computes an output. The mapping is a differentiable function of the weights, which Well, techinically the

derivative does not exist
at every point, both be-
cause of the ReLU and
the max pooling oper-
ations, but we ignore
that fact.

Well, techinically the
derivative does not exist
at every point, both be-
cause of the ReLU and
the max pooling oper-
ations, but we ignore
that fact.

means we can adjust the weights to decrease the loss by performing gradient descent, and
we can compute the relevant gradients using back-propagation!

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 76

8.4 Backpropagation in a simple CNN

Let’s work through a very simple example of how back-propagation can work on a convo-
lutional network. The architecture is shown below. Assume we have a one-dimensional
single-channel image X of size n× 1× 1, and a single filterW1 of size k× 1× 1 (where we
omit the filter bias) for the first convolutional operation denoted “conv” in the figure be-
low. Then we pass the intermediate result Z1 through a ReLU layer to obtain the activation
A1, and finally through a fully-connected layer with weightsW2, denoted “fc” below, with
no additional activation function, resulting in the output A2.

X = A0

0

0

pad with 0’s
(to get output

of same shape)

W1

Z1 A1

Z2 = A2

W2

conv ReLU fc

For simplicity assume k is odd, let the input image X = A0, and assume we are using
squared loss. Then we can describe the forward pass as follows:

Z1
i =W

1TA0
[i−bk/2c:i+bk/2c]

A1 = ReLU(Z1)

A2 = Z2 =W2TA1

Lsquare(A
2,y) = (A2 − y)2

Study Question: Assuming a stride of 1, for a filter of size k, how much padding
do we need to add to the top and bottom of the image? We see one zero at the top
and bottom in the figure just above; what filter size is implicitly being shown in the
figure? (Recall the padding is for the sake of getting an output the same size as the
input.)

8.4.1 Weight update

How do we update the weights in filterW1?

∂loss
∂W1 =

∂Z1

∂W1

∂A1

∂Z1

∂loss
∂A1

• ∂Z1/∂W1 is the k×nmatrix such that ∂Z1
i/∂W

1
j = Xi−bk/2c+j−1. So, for example, if i =

10, which corresponds to column 10 in this matrix, which illustrates the dependence
of pixel 10 of the output image on the weights, and if k = 5, then the elements in
column 10 will be X8,X9,X10,X11,X12.

Last Updated: 11/11/24 10:10:55



MIT 6.390 Fall 2024 77

• ∂A1/∂Z1 is the n× n diagonal matrix such that

∂A1
i/∂Z

1
i =

{
1 if Z1

i > 0
0 otherwise

• ∂loss/∂A1 = (∂loss/∂A2)(∂A2/∂A1) = 2(A2 − y)W2, an n× 1 vector

Multiplying these components yields the desired gradient, of shape k× 1.

8.4.2 Max pooling

One last point is how to handle back-propagation through a max-pooling operation. Let’s
study this via a simple example. Imagine

y = max(a1,a2) ,

where a1 and a2 are each computed by some network. Consider doing back-propagation
through the maximum. First consider the case where a1 > a2. Then the error value at y
is propagated back entirely to the network computing the value a1. The weights in the
network computing a1 will ultimately be adjusted, and the network computing a2 will be
untouched.

Study Question: What is ∇(x,y) max(x,y) ?

Last Updated: 11/11/24 10:10:55


